Дрейф и сжатия льда представляют несомненный интерес как с чисто научной, так и с практической точек зрения. В особенности это касается проявления экстремальных случаев, когда создается реальная угроза безопасности морских инженерных объектов и даже людей.
Снижению рисков, связанных с экстремальными проявлениями динамики ледяного покрова, могут способствовать, в частности, заблаговременно выполненные расчеты ожидаемых ледовых условий, позволяющие получить режимно-статистические характеристики интересующего явления. Обычно эта задача решается путем анализа больших массивов натурных наблюдений. Однако нередко данные наблюдений отсутствуют, и в таких случаях привлекаются данные моделирования: с помощью модели воспроизводятся разные сценарии ледовых и метеорологических условий, результаты модельных расчетов обобщаются, т.е. составляются выборки интересующих характеристик, и эти выборки анализируются с помощью методов математической статистики. Именно этот подход является предметом настоящей статьи.
Модель
Для решения задачи исследования - получения экстремальных оценок дрейфа и сжатий льда - была использована численная динамико-термодинамическая модель краткосрочного прогноза дрейфа и перераспределения ледяного покрова. Модель предоставляет возможность прогнозировать временную эволюцию основных параметров ледяного покрова: сплоченность (общую и частную), толщину (по каждой возрастной градации), дрейф, сжатия, торошение, разрушенность, положение границ припая (последнее - в экспериментальном порядке) [3].
Представляется, что в данном случае имеет смысл опустить описание термодинамического блока модели и ограничиться характеристикой динамики ледяного покрова.
Динамика ледяного покрова рассчитывается (прогнозируется) на основе уравнения баланса количества движения в нестационарной постановке.
(1),
где W - скорость дрейфа льда, Mл - масса льда в столбике единичной площади, τa , τw - касательные напряжения на верхней и нижней поверхностях льда, Fc - сила Кориолиса, Fg - сила, обусловленная наклоном уровня, Fp - сила внутреннего взаимодействия в ледяном покрове.
Тангенциальные напряжения на верхней и нижней поверхностях льда определяются с помощью квадратичного закона. Сила Кориолиса и проекция силы тяжести на поверхность моря задаются традиционно.
Форма записи слагаемого, описывающего внутренне взаимодействие в ледяном покрове, определяется принятой реологической моделью. В данной модели считается, что ледяной покров проявляет свойства, характерные для вязко-пластических сред.
Вязкое взаимодействие в ледяном покрове подробно рассмотрено в работе [1].
Согласно этой работе, сила внутреннего взаимодействия пропорциональна дивергенции внутренних напряжений. Внутренние напряжения σξξ, σχχ, соответствующие главным осям тензора скоростей деформаций, рассчитываются по формуле:
(2)
Параметр К определяется следующим образом:
1) при выполнении каждого из всех следующих условий:
(3)
2) К=0 при невыполнении хотя бы одного из условий (3).
Здесь:
К0 = 1010 кг с-1 м-1, , - инварианты тензора скоростей деформаций, соответствующие осям x, c эллипса деформаций, С - сплоченность льда, W - скорость дрейфа.
Отличительной особенностью деформирования пластических сред является наличие порогового механизма, т.е. среда деформируется при достаточно больших внешних нагрузках.
Если напряжения, возникающие в ледяном покрове под влиянием пространственной неоднородности дрейфа, превышают некоторый предел, то это может привести к торошению. В данном случае этот предел оценивается как устойчивость ледяной пластины, лежащей на упругом основании, по отношению к продольному изгибу [6]:
(4)
где g - ускорение силы тяжести, Е - модуль Юнга, μ - коэффициент Пуассона.
В том случае, если в данной ячейке происходит торошение, то это означает накопление «лишнего» объема льда (это своего рода аналог пластического течения). Если напряжение недостаточно, то накопления лишнего объема не происходит, т.е. накладывается условие:
(5)
В этом случае поле дрейфа итеративно корректируется в соответствии с условием (5).
Описанный принцип по существу имитирует пластическое поведение ледяного покрова [4].
На твердой границе при нажимном дрейфе нормальная к берегу компонента равна нулю, касательная компонента дрейфа трансформируется в зависимости от угла между направлением дрейфа и направлением береговой черты. На жидкой границе напряжения равны нулю.
На границах расчетной области при дрейфе, направленном внутрь расчетной области, градиенты сплоченности (общей и частной) и скорости равны нулю; при выносном дрейфе градиенты сплоченности и скорости на границе равны соответствующим градиентам в ближайшей внутренней ячейке.
Численная схема модели построена на основе регулярной сетки с пространственным шагом от 5 до 100 км в зависимости от размеров расчетной области. Временной шаг составляет 10 минут, что соответствует условию Курранта.
Ледяной покров представлен набором маркеров, каждый из которых характеризуется пространственными координатами в декартовой системе, толщиной, торосистостью и скоростью.
Расчет дрейфа льда основан на лагранжевском методе. Для каждого маркера определяются скорость и перемещение через каждые 10 минут.
Силы внутреннего взаимодействия, возникающие при дрейфе, определяются в соответствии с эйлеровским подходом и считаются одинаковыми в пределах ячейки.
Использование метода маркеров позволяет автоматически выполнять условие сохранения массы и полностью исключить проблемы, связанные с вычислительной вязкостью.
С помощью модели было выполнено 125 недельных расчетных серий, что позволило получить 1750 расчетных матриц, характеризующих дрейф и сжатия льда с 12-часовым осреднением. В качестве начальных условий расчетов использовались ледовые карты юго-западной части Карского моря за разные годы и месяцы, что позволило учесть практически весь спектр изменчивости ледовых условий: начало зимы, максимальное развитие ледяного покрова, весеннее таяние льда, холодные зимы, теплые зимы, сильные штормы и т.д.
Получение режимно-статистических характеристик
Из каждой расчетной матрицы выбираются значения дрейфа и сжатий льда в заданных ячейках. Эти значения группируются по максимальной толщине льда, присутствующей в данной ячейке, и по направлению дрейфа. В результате получается некоторое количество выборок дрейфа и сжатий, причем каждая выборка соответствует определенному диапазону максимальной толщины льда при заданных направлениях дрейфа.
Оценки экстремального дрейфа малой повторяемости могут быть получены с помощью широко применяемого метода «эллипса рассеивания» [5].
Положение центра эллипса определяется модулем среднего результирующего вектора скорости Wr и его направлением θ.
; (6)
Направление b большой оси эллипса рассеивания отсчитывается от оси y по часовой стрелке и находится по формуле:
(7)
Главные среднеквадратические отклонения, т.е. среднеквадратические отклонения проекций скоростей дрейфа на главные оси эллипса определяются выражением:
(8)
В формулах (6-8) приняты обозначения:
Wx, Wy - средние значения проекций вектора скорости дрейфа на оси x и y;
σx, σy - соответствующие им среднеквадратические отклонения;
r - коэффициент корреляции между проекциями скоростей дрейфа на оси x и y.
Эллипс рассеивания, полуоси которого равны величинам σξ и ση, называется единичным. Вероятность попадания случайного вектора в такой эллипс составляет примерно 39,3 %. В том случае, когда необходимо получить оценку более высокой вероятности попадания вектора в эллипс, длина оси должна быть увеличена. Коэффициент увеличения оси эллипса Cf в зависимости от вероятности попадания вектора в эллипс находится по формуле:
(9)
где p - вероятность попадания вектора в эллипс.
Далее, зная все необходимые параметры эллипса, легко получить оценки экстремальной скорости дрейфа заданной вероятности по любому направлению.
Оценки экстремальных сжатий малой повторяемости можно получить с помощью широко применяемого распределения Гумбеля [2]. Общий вид этого распределения задается выражением
, (10)
где a, u - параметры распределения, причем а>0, u>0.
, , (11)
где xm - среднее выборки, sx - среднеквадратическое отклонение выборки, σN и yN берутся из стандартных таблиц.
Нередко экстремальные значения малой повторяемости требуется выразить в терминах «1 раз в N лет». Соответствие между вероятностью, выраженной в процентах (или долях единицы), и обеспеченностью «1 раз в N лет» можно получить, оценив максимально возможное число случаев. Например, если речь идет о дрейфе льда с полусуточным осреднением, то в месяц возможно примерно 60 случаев, за год - 60´L, где L - количество месяцев ледового сезона и т.д.
В таблицах 1-2 показаны примеры расчетных значений экстремального дрейфа и сжатий льда в юго-западной части Карского моря.
Таблица 1. Экстремальный дрейф
Толщина, м |
Ср. модуль, м/с |
Ст. отклонение, м/с |
Экстремальный дрейф (м/с), возможный 1 раз в ... |
|||||
1 год |
5 лет |
10 лет |
20 лет |
50 лет |
100 лет |
|||
< 0,30 |
0,15 |
0,13 |
0,73 |
0,89 |
0,96 |
1,03 |
1,13 |
1,20 |
0,30-0,70 |
0,12 |
0,13 |
0,67 |
0,84 |
0,91 |
0,98 |
1,07 |
1,14 |
0,70-1,20 |
0,11 |
0,11 |
0,59 |
0,73 |
0,79 |
0,85 |
0,93 |
0,98 |
1,20-1,50 |
0,10 |
0,10 |
0,48 |
0,61 |
0,66 |
0,72 |
0,79 |
0,84 |
> 1,50 |
0,08 |
0,06 |
0,32 |
0,40 |
0,43 |
0,46 |
0,50 |
0,54 |
Таблица 2. Экстремальное сжатие
Толщина, м |
Ср. модуль, кПа |
Ст. отклонение, кПа |
Экстремальное сжатие (кПа), возможное 1 раз в ... |
|||||
1 год |
5 лет |
10 лет |
20 лет |
50 лет |
100 лет |
|||
< 0,30 |
5,2 |
8,7 |
43,8 |
54,7 |
59,3 |
64,0 |
70,2 |
74,9 |
0,30-0,70 |
7,9 |
10,5 |
53,6 |
66,7 |
72,4 |
78,1 |
85,5 |
91,2 |
0,70-1,20 |
8,7 |
12,8 |
63,4 |
79,5 |
86,5 |
93,4 |
102,6 |
109,5 |
1,20-1,50 |
5,7 |
10,0 |
45,7 |
58,3 |
63,7 |
69,1 |
76,2 |
81,6 |
> 1,50 |
8,0 |
8,9 |
42,2 |
53,4 |
58,3 |
63,1 |
69,5 |
74,3 |
Заключение
Оценки экстремального дрейфа составляют от 0,5-0,7 м/с (1 раз в год) до 0,6-1,2 м/с (1 раз в 100 лет). Понятно, что наибольшие значения дрейфа соответствуют самым тонким льдам, а наименьшие - самым толстым. В целом этот результат можно признать вполне реальным. При этом надо иметь в виду, что речь идет о дрейфе, осредненном за 12-часовые периоды. Это означает, что кратковременные усиления дрейфа, связанные, прежде всего, с приливными явлениями, в данном случае не учитываются.
Экстремальные сжатия составляют от 40-65 кПа (1 раз в год) до 75-110 кПа (1 раз в 100 лет). Несколько неожиданной оказалась зависимость сжатий от толщины льда: с увеличением толщины сжатия увеличиваются, достигают максимума при толщине льда 0,7-1,2 м (однолетний лед средней толщины), а затем, по мере дальнейшего роста толщины сжатия, снижаются. Этот эффект, по всей видимости, объясняется тем, что при толщине льда 70-120 см создается такое сочетание толщины и подвижности льда, которое наиболее «благоприятно» для возникновения сильных сжатий. При толщинах менее 70 см лед не может создать мощное давление из-за малой массы, а при толщинах более 120 см лед менее подвижен, что также препятствует росту сжатий.
Как и для дрейфа, в данном случае речь идет об экстремальных сжатиях, осредненных за 12-часовые периоды. Известно, что кратковременные локальные сжатия могут достигать гораздо бóльших значений (возможно - на 1-2 порядка, что сопоставимо с пределом прочности льда), но на данный момент сложно делать какие-либо предположения о характере количественной связи между осредненными и локальными кратковременными сжатиями.
Подводя итог, можно констатировать, что в целом статистический анализ результатов массовых модельных расчетов дает вполне реалистические оценки.
Работа проводилась при финансовой поддержке Министерства образования и науки РФ в рамках ФЦП «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2007-2013 годы» по государственному контракту № 16.515.11.5074
Рецензенты:
- Смирнов Виктор Николаевич, доктор физико-математических наук, заведующий лабораторией физики льда, ФГБУ «ААНИИ», Санкт-Петербург.
- Воинов Геннадий Николаевич, доктор географических наук, старший научный сотрудник, ФГБУ «ААНИИ», Санкт-Петербург.