Scientific journal
Modern problems of science and education
ISSN 2070-7428
"Перечень" ВАК
ИФ РИНЦ = 0,931

HOW TO DETERMINE DENSITY OF BONE TISSUE WITH METHOD OF INDIRECT TOTAL MEASUREMENTS

Dobrovinskiy I.R. 1 Kibitkin A.S. 2 Kislov A.I. 2 Lomtev E.A. 1
1 GOU VPO Penza State University Medical School Department of Orthopedics and Traumatology Military Emergency Medicine, Penza
2 GOU VPO Penza State University Medical School Department of Orthopedics and Traumatology Military Emergency Medicine, Penza,
В статье представлены материалы исследования, посвященные определению плотности костной ткани импедансным методом у больных с переломами и удлинениями длинных трубчатых костей. Показана актуальность применения новых, более чувствительных методик определения локальной плотности костной ткани. Сформулирована физическая составляющая и раскрыта суть методики измерения суммарного сопротивления биологических тканей. Приведены различные варианты сочетания компонентов электрических схем, моделирующих компоненты исследуемых биологических объектов. Выполнен их анализ с определением наиболее приемлемых для биологических объектов сочетаний компонентов. Проанализированы результаты исследований и сделаны выводы о том, что данные схемы могут быть рассмотрены как схемы замещения реальных биологических объектов. Применение импедансного метода в оценке регенерации костной ткани при консолидации переломов и удлинении длинных трубчатых костей позволит получать своевременную, объективную информацию о локальном состоянии костной ткани и принимать адекватные действия для предотвращения осложнений.
The results of research how to determine density of bone tissue by impedance method in patients with long cylindrical bone fractures are presented in this article. The urgency of application of new, more sensitive techniques of definition of local density of a bone fabric is shown. Physical component is defined. Method of total resistance measurements of biological tissues is shown as well. Various variants of a combination of components of the electric schemes modeling components of investigated biological objects are resulted. Their analysis with definition of the closest for biological objects a combination of components is made. All results have been analyzed. Hence, we’ve come to the conclusion that these schemes can be treated like the replacement ones. They can be used in replacement of biological objects, in impedance method to evaluate bone tissue resistance in fractures, in elongation of long bones. These schemes help to get necessary information about local state of bone tissue in time as well and take special actions to avoid any complications.
impedance method
fracture
density of bone tissue
callus
В медицинской практике в повседневной работе травматолога-ортопеда постоянно возникает необходимость определения зрелости костной мозоли, что обуславливает момент снятия фиксирующих устройств и начало нагрузки на поврежденный сегмент [4]. Для определения зрелости костного регенерата самым распространенным в настоящее время является метод рентгенологического обследования больного с повреждениями и заболеваниями опорно-двигательной системы.

Однако общепризнанной является методика, при которой кратность рентгенологического исследования составляет в среднем 1 раз в месяц [2]. Это обусловлено малой чувствительностью метода к незначительно меняющимся характеристикам регенерирующей костной ткани и лучевой нагрузкой, испытываемой организмом больного. Так при рентгенографии бедренной кости в 2-х стандартных проекциях  лучевая нагрузка составляет 15-20 м.Зв. При условии ежемесячного повторения контрольной рентгенографии суммарная доза за период  лечения от 2 до 6 месяцев составит 50-120 м.Зв [2].

Актуальность вопросов, возникающих при изучении параметров электрических цепей с двумя доступными узлами, называемыми двухполюсниками, постоянно растет. Это вытекает, с одной стороны, из большего числа такого рода задач в различных областях знания, а, с другой стороны, - из широкого развития средств измерительной техники, использующих операционные усилители (ОУ), микропроцессоры (МП), и персональные ЭВМ.

В литературе рассмотрены различные задачи, требующие определения параметров многоэлементных двухполюсников (ПМД), которые по области применения условно могут быть разделены на несколько больших групп:

- научные исследования;

- научные исследования;

- контроль радиоэлектронной аппаратуры (РЭА);

- преобразование неэлектрических величин в электрические величины;

- медицинская диагностика [1].

Вышеуказанные причины зачастую ведут к недооценке или переоценке рентгенологических  данных, что влечет за собой увеличение сроков иммобилизации, ограничение двигательного режима больного или к осложнениям в виде рефрактур [5].

Использование для этой цели импедансного метода (суть которого состоит в изучении суммарного электрического сопротивления биообъекта) способно многократно повысить объективность получаемой информации при обследовании больных с переломами и удлинениями длинных трубчатых костей.

При использовании импедансного метода чаще всего измеряется электрическое сопротивление, которое потом пересчитывается в удельное сопротивление или проводимость. Импеданс биоткани имеет активную и реактивную (емкостную) составляющие [3]. Данный метод неинвазивный, что позволяет использовать его с большей кратностью. Параметры, определяемые в процессе измерений, объективно отражают состояние костной ткани в момент измерений и обеспечивают возможность в дальнейшем прогнозировать течение процессов репарации костной ткани.

Все биологические объекты могут быть представлены в виде электрических схем замещения. Для двухэлементных двухполюсников возможны следующие два топологических варианта, представленные на рис 1.

зшс

Рис 1. Топологические варианты двух- (ДДП), трёх- (ТДП) и четырёхэлементных (ЧДП) двухполюсников

В общем случае комплексное сопротивление Zx может содержать как активное - Rx, так и реактивное Сx - ёмкостное сопротивления (независимо от характера элементов электрической цепи RX, CX заменены обобщенным параметром Zi, где i = 1,2 для ДДП, i = 1,2,3 для ТДП и i = 1,2,3,4 для  ЧДП). Внешние узлы двухполюсника изображены незачерненными кружками. Недоступный внутренний узел изображен зачерненным кружком.

Из рис. 1 следует, что ДДП реализуются в двух вариантах: параллельное или последовательное соединения двух элементов Rx , Сx, отличаются отсутствием внутреннего узла. Внешние узлы ДП изображены незачернёнными кружками.

Для отдельных вариантов ДДП имеем:  

а)    ZХ=Z1Z2(Z1+Z2)-1;

б)    ZХ=(Z1+Z2).

Из рис. 1 следует, что ТДП реализуются в двух вариантах. Это последовательное соединение двух элементов цепи с параллельным соединением третьего элемента (рисунок 1, а) и последовательное соединение первого элемента цепи с параллельным соединением двух других (рисунок 1, б).

Первый вариант (рисунок 1, а - ТДП) отличается отсутствием третьего внутреннего узла. В  случае смешанного соединения элементов (рисунок 1, б - ТДП) появляется внутренний недоступный узел.  Внешние узлы ДП изображены не зачернёнными кружками. Недоступный внутренний узел изображен зачернённым кружком.

Для отдельных вариантов ТДП имеем:  

а)   ZХ=(Z1+Z2)Z3(Z1+Z2+Z3)-1;

б)ZХ=(Z1Z2)(Z1+Z2)-1+ Z3.

Для отдельных вариантов ЧДП имеем:  

а)    ZХ=(Z1+Z2)(Z3+Z4)(Z1+Z2+Z3+Z4)-1;

б)   ZХ=(Z1+Z2)Z3(Z1+Z2+Z3)-1+Z4;

в)    ZХ=Z1Z2(Z1+Z2)-1+Z3+Z4 .

В этом случае семи вариантам обобщённых схем двухполюсников (рис. 1) соответствуют три  группы вариантов использования двух- (ДДП),  трёх- (ТДП), четырех- (ЧДП)    элементов Rx и Сx, представленных таблицами 1, 2, 3 соответственно.

Во втором столбце таблиц представлены электрические схемы  ДП, в третьем - соответствующее выражение для операторного сопротивления  Zp, где p - оператор  Лапласа.  В четвёртом  столбце таблиц - операторное сопротивление  Zp в виде отношения полиномов первой или второй степеней, причем степени числителя и знаменателя либо совпадают, либо отличаются на 1. В пятом столбце таблиц приведены значения коэффициентов полиномов числителя a1, a2, a3, a4  и знаменателя  b1, b2, b3, b4. В шестом столбце таблиц представлено для Zp расположение на комплексной плоскости корней уравнений числителя (в виде не зачернённых кружочков) и знаменателя (в виде зачернённых кружочков).

Из табл. 1 следует, что двухполюсники первой группы (ДДП) реализуются в двух вариантах: параллельное и последовательное соединения двух элементов Rx и Сx.

Табл.  1.   Схемы нерезонансных ДДП с потерями

п/п.

Электрическая

схема

Обобщенное

сопротивление

цепи Z(p)

Представление Z(p)

в виде

отношения полиномов

Значения

коэффициентов

полиномов

Расположение

 полюсов

и нулей

Z(p)

1.

pic

f

f

d

pic

2.

pic

f

f

f

pic

Из табл. 2 следует, что двухполюсники  второй группы (ТДП) двухузловые ДП  с параллельно-последовательным соединением трёх реализуются в четырёх вариантах попарно. Первая пара (строки 1, 2) - элементов Rx и Сx. Вторая пара (строки 3, 4) - трёхузловые ДП  с параллельно-последовательным соединением трёх элементов Rx и Сx и наличием внутреннего недоступного узла.

Из табл. 3 следует, что двухполюсники  третьей группы (ЧДП) реализуются в четырёх вариантах. Первый вариант (строка 1) - двухузловые ДП  с параллельным соединением двух пар последовательно соединённых элементов Rx и Сx. Остальные варианты (строки  2, 3, 4) - трёхузловые ДП  с параллельно-последовательным соединением четырёх элементов Rx и Сx и наличием внутреннего недоступного узла.

                                                                 Табл.  2.   Схемы нерезонансных ТДП с потерями

п/п.

Электрическая

схема

Обобщенное сопротивление

цепи Z(p)

Представление Z(p)

в виде отношения полиномов

Значения

коэффициентов

полиномов

Расположение

 полюсов

и нулей

Z(p)

1.

p

f

f

f

 

p

2.

p

f

f

f

p

3.

p

f

f

f

p

4.

p

f

f

f

p

Табл. 3 Схемы нерезонансных ЧДП с потерями

п/п.

Электрическая

схема

Обобщенное сопротивление

цепи Z(p)

Представление Z(p)

в виде отношения полиномов

Значения

коэффициентов

полиномов

Расположение

 полюсов

и нулей

Z(p)

1.

p

f

h

f

 

p

2.

p

f

h

3.

p

g

g

4.

p

g

f

                                                                                                                                                           

                                                                                                                            

Данные схемы могут быть рассмотрены как схемы замещения реальных биологических объектов.

Применение импедансного метода в оценке регенерации костной ткани при консолидации переломов и удлинении длинных трубчатых костей позволит получать своевременную, объективную информацию о локальном состоянии костной ткани и принимать адекватные действия для предотвращения осложнений.

Рецензенты:

Сиваконь С. В., д.м.н., профессор, зав. кафедрой Травматологии  ортопедии и ВЭМ Медицинского института Пензенского Государственного Университета Министерства образования Российской Федерации, г. Пенза.

Моисеенко В. А., д.м.н., профессор, зав. кафедрой Травматологии и ортопедии ГБОУ ДПО «Пензенский институт усовершенствования врачей» Минздравсоцразвития Российской Федерации, г. Пенза.