Scientific journal
Modern problems of science and education
ISSN 2070-7428
"Перечень" ВАК
ИФ РИНЦ = 1,006

ROLE OF PONTINE NORADRENERGIC A5 NEURONS IN REGULATION OF RESPIRATORY AND BLOOD PRESSURE REACTIONS BY NOCICEPTIVE STIMULUS IN RATS

Pyatin V.F. 1 Tatarnikov V.S. 1 Glazkova E.N. 1 Shirolapov I.V. 1
1 Samara State Medical University
There are neuroanatomical and neuropharmacological data of the pontine A5 region noradrenergic neurons participation in the nociceptive mechanisms in mammals, however, no unequivocal confirming neurophysiological evidence. Arterial pressure (AP), phrenic nerve discharges (PND) and A5 neurons activity were recorded in pentobarbital anesthetized rats, preserving spontaneous breathing. We registered 32 noradrenergic A5 neurons with regular low-frequency discharges (2,3±0,4 Hz). Hypoxia (100% N2, 10 s) caused tachypnea, hypotension and an increase in the discharge frequency of these A5 neurons to 9,6±1,5 Hz. All noradrenergic A5 neurons (23 of 32 cells), which were tested to thermal nociceptive stimulus ("tail-flick" test), were highly activated 2,3±0,3 to 11,4±0,5 Hz and, at the same time, there were hypertension and tachypnea. Latent period and duration of response to nociceptive stimulation of the noradrenergic A5 neurons and PND did not differ significantly. At the same time, latent period and duration of nociceptive hypertensive response was significantly greater than that of noradrenergic A5 neurons. A5 noradrenergic cells were activated during the blood pressure increase phase by nociceptive stimulation. Thus, in the first time we received direct neurophysiological evidence for the noradrenergic A5 cells involvement in the mechanisms of vegetative functions regulation during pain. It was also revealed that noradrenergic A5 neurons limit the activation of respiratory center during the entire period of nociceptive stimulus and control of the blood pressure increase phase by pain.
nociception
hypoxia
noradrenergic a5 neurons

Норадренергические нейроны области А5 моста моносинаптически связаны с боковыми рогами спинного мозга и дыхательным центром, что обеспечивает их важную роль в регуляции кровообращения и дыхания во время различных афферентных воздействий и физиологических процессов [10]. Во многих исследованиях продемонстрировано, что область А5 моста участвует в регуляции дыхания, кровообращения и симпатической активности при гипоксии [3; 4; 9]. Электрофизиологическими и иммуногистохимическими методами было выявлено, что норадренергические А5 нейроны имеют низкочастотную фоновую активность до 10 Гц и активируются при стимуляции периферических хеморецепторов гипоксией [3; 9]. Также показано, что норадренергические А5 нейроны чувствительны к бароцептивным раздражениям, но слабо или совсем не реагируют на механоноцицептивный стимул [9]. В то же время экспериментально выявлено торможение температурного болевого рефлекса отдергивания хвоста (tail-flick reflex) у крыс при микроинъекции глутамата в область А5 моста [8]. Целью настоящего исследования было: 1) изучение возможной интеграции норадренергическими А5 нейронами афферентации от болевых рецепторов с использованием tail-flick теста, 2) определение периода болевой реакции РДН и АД, который регулируют норадренергические А5 нейроны.

Методика исследования

Во всех проведённых экспериментах придерживались положений Хельсинкской декларации Всемирной медицинской ассоциации и рекомендаций по уходу за животными и экспериментальным процедурам, содержащихся в директивах Европейского союза (86/609/ЕС). Экспериментальные протоколы были утверждены Комитетом по биоэтике Самарского государственного медицинского университета.

Эксперименты были сделаны на 12 белых крысах массой 260–320 г. До исследований животные содержались в виварии Самарского государственного медицинского университета в вентилируемых клетках. В комнате с клетками контролировалась температура не ниже 22 °C и поддерживался цикл искусственного освещения день-ночь (свет с 08.00 до 20.00 часов). Вода и стандартное питание были в свободном доступе.

Операционная подготовка. Анестезия была индуцирована пентобарбиталом натрия (начальная доза 40 мг/кг внутрибрюшинно и при необходимости дополнена 4 мг/кг внутривенно). Катетеры были введены в левую бедренную артерию для измерения артериального давления и левую бедренную вену для введения лекарств. Трахею интубировали ниже гортани. Животные дышали спонтанно атмосферным воздухом. Температура тела измерялась ректально и поддерживалась на уровне 37-38 °C с помощью сервогрелки. Концентрация CO2 в конечной порции выдыхаемого газа контролировалась в ходе эксперимента быстрореагирующим анализатором углекислоты (ГАУ-5; Россия) и варьировала в диапазоне значений от 4 до 5%. Глубина анестезии оценивалась по корнеальному рефлексу и рефлексу отдергивания при щипке лапы, которые поддерживались очень слабыми или отсутствовали в течение эксперимента. Через каждые 15 минут мы проводили контроль этих рефлексов и при необходимости вводили дополнительные дозы анестетика. Голова животного фиксировалась в стереотаксическом аппарате вентральной поверхностью вверх с помощью ушных баров, неповреждающих слуховых перепонок, и планки, фиксирующей верхнюю челюсть. Конечности привязывались к горизонтальному столику, соединенному с сервогрелкой. Для выхода к каудальным вентролатеральным отделам моста перевязывали и пересекали трахею с пищеводом выше трахеостомы и отводили их рострально. Отделяли длинные и вентральные прямые мышцы от костей черепа, с помощью бормашины удаляли крыловидную кость до нужного уровня, вскрывали твёрдую и мягкую мозговые оболочки. Для подхода к правому диафрагмальному нерву экзартикулировали и удаляли ключицу, перевязывали и пересекали подключичную вену вместе с мягкими тканями, под веной в нервном сплетении находили диафрагмальный нерв. Затем его выделяли на протяжении 5-6 мм, заливали смесью силиконового геля и вазелинового масла, периферический конец нерва пересекали и накладывали на биполярные вольфрамовые электроды. Более подробно оперативный подход к вентральной поверхности ствола мозга и диафрагмальному нерву описан в наших предыдущих работах [2; 7].

Регистрация физиологических процессов. Электрическую активность нейронов области А5 отводили внеклеточно стеклянными микроэлектродами, заполненными 2,5 М КСl с диаметром кончика менее 1 мкм и сопротивлением 5-10 МОм. Внеклеточные потенциалы были усилены с помощью усилителя переменного тока (DL 314N-725; Neurobiolab Company; Россия). Анализировали частоту генерации потенциалов действия и длительность реакций нейронов на раздражающие воздействия. АД измеряли в левой бедренной артерии, в которую вводили катетер, заполненный гепарином с физиологическим раствором в соотношении 1:1000. Катетер соединяли с комплексом аппаратуры, состоящей из малогабаритного индукционного датчика давления и полиграфа. Для регистрации РДН использовали усилитель переменного тока (DL 314N-725; Neurobiolab Company; Россия), фильтрацию сигнала производили в диапазоне 0,01-10 kHz. В нейрограммах анализировали длительность РДН, частоту генерации РДН, длительность экспираторной паузы между РДН и общее время дыхательного цикла. Амплитуду РДН оценивали по его интегрированной активности (время интеграции 50 мс). Данные были обработаны с использованием аналого-цифрового преобразователя (L-Card E14-440, FBM Engineering; Россия) и сохранены на жестком диске персонального компьютера при помощи программного обеспечения PowerGraph software (version 3.3. Professional).

Афферентные раздражители. Периферические хеморецепторы стимулировали кратковременной гипоксией (вдыхание N2 в течение 10 с). По данным других исследователей, такая методика проведения гипоксической стимуляции не оказывает влияния на центральные хеморецепторы [9]. Для ноцицептивной стимуляции использовали модель термического раздражения ноцицепторов хвоста (tail-flick тест). Для этого конец хвоста (примерно 1/3 всей длины) погружали в термостатированную ячейку, заполненную водой (52 °С). После первых движений хвоста его вынимали из водной термоячейки и помещали в воздушную термоячейку (37 °С) для восстановления исходной температуры.

Экспериментальный протокол. Для устранения помех от дыхательных движений и пульсации сосудов при регистрации активности нейронов использовали «плавающий» микроманипулятор. Стеклянные микроэлектроды были позиционированы в область A5 моста контрлатерально по отношению к оперированному диафрагмальному нерву в соответствии со стереотаксическим атласом мозга крыс со следующими координатами: от 0,2 до −1,6 мм в рострокаудальном направлении от интерауральной линии, от 2 до 3 мм латеральнее средней линии и от 1 до −0,5 мм в глубину к интерауральной линии. Микроэлектроды погружали в область А5 со стороны вентральной поверхности моста и с шагом 5 мкм зондировали в глубину до 2 мм. Следующие проводки были в пределах исследуемой зоны на расстоянии 200 мкм в рострокаудальном или медиолатеральном направлении. Зарегистрированные клетки в области A5 моста были отнесены нами к норадренергическим A5 нейронам, когда они соответствовали следующим критериям [9]: 1) низкая и стабильная частота разрядов менее 5 Гц; 2) длительность потенциалов действия более 0,6 мс; 3) сильная активация на гипоксический стимул; и 4) соответствие места регистрации клетки координатам расположения группы A5. После того как записанные образцы были отнесены к норадренергическим A5 нейронам, клетки тестировали на ноцицептивный стимул. В ходе экспериментов фиксировались стереотаксические координаты положения кончика микроэлектрода относительно вентральной поверхности моста и интерауральной линии при каждой успешной регистрации нейрона области А5, которые в дальнейшем были использованы для реконструкции локализации клеток по атласу мозга крысы.

Статистическая обработка данных. При нормальном распределении данных (Kolmogorov-Smirnov test and Shapiro-Wilk’s W test) для сравнения параметров АД, РДН, активности А5 нейронов до и после воздействия использовали paired T-test. Для сравнения латентных периодов и длительностей реакций АД, РДН, А5 нейронов применяли unpaired T-test. В других случаях использовали Wilcoxon test and Mann-Whitney U-test. Числовые данные представлены в виде средних величин и ошибок среднего. Изменения средних величин каждого из параметров считались статистически значимыми при Р< 0,05.

Результаты исследования

В серии опытов на 12 крысах была зарегистрирована электрическая активность 32 нейронов области А5 моста с длительностью потенциалов действия более 0,6 мс, у которых во время кратковременной гипоксии происходило увеличение частоты разрядов с 2,3±0,4 до 9,6±1,5 Гц (Р<0,001). Большинство исследованных нами нейронов области А5 моста, чувствительных к гипоксии, были локализованы от уровня нижней границы оливарного комплекса и в глубину до 2 мм от вентральной поверхности мозга. Образцы внеклеточной электрической активности были зарегистрированы в области каудального вентролатерального моста со следующими стереотаксическими координатами: от 0,2 до -1,6 мм в рострокаудальном направлении от интерауральной линии, от 2 до 3 мм латеральнее средней линии и от 1 до -0,5 мм в глубину от интерауральной линии. Активации нейронов области А5 моста во время гипоксии соответствовало увеличение частоты РДН с 38,7±1,0 до 65,9±1,6 Гц, а также рост амплитуды этих разрядов с 16,0±0,6 до 19,2±0,4 относительных единиц (во всех случаях Р < 0,001 by paired t test). Латентный период и длительность реакции на гипоксический стимул РДН (8,5±0,4 и 17,4±0,6 с соответственно) и нейронов зоны А5 (8,3±0,7 и 17,8±0,5 с соответственно) достоверно не отличались между собой. В ответ на гипоксию у крыс возникала гипотензия, латентный период которой составлял 14,2±0,7 с, а время гипотензивной реакции - 35,4±2,9 с. АД во время гипоксии максимально снижалось с 106,2±0,4 до 76,7±0,5 мм рт. ст. (Р < 0,001 by unpaired t test).

Рис. 1. Влияние кратковременной гипоксии на артериальное давление (АД), разряды диафрагмального нерва (РДН) и активность норадренергического А5 нейрона моста крысы. А - длительность гипоксии 10 с (верхняя линия, ингаляция 100% азота). Вертикальная линия - 50 мкВ. Б - графические данные. *** - Р < 0.001 относительно фона

Все чувствительные к гипоксии нейроны области А5, протестированные на термический болевой стимул (23 из 32 клеток), увеличивали залповую активность с 2,3±0,3 до 11,4±0,5 Гц. Латентный период и длительность реакции А5 нейронов на болевой стимул составили соответственно 3,6±0,2 и 7,6±0,3 с. При болевой стимуляции у крыс увеличивалась частота генерации РДН с 39,0±1,0 до 61,9±1,6 Гц за счёт уменьшения их длительности с 0,46±0,02 до 0,39±0,02 с и экспираторного времени с 1,06±0,01 до 0,84±0,01 с. Амплитуда РДН возрастала с 15,9±0,1 до 18,2±0,2 относительных единиц (во всех случаях Р<0,001 by paired t test). Латентный период респираторной реакции составлял 3,4±0,2 с, а длительность - 7,6±0,3 с и достоверно не отличались от этих же параметров реакции нейронов зоны А5. Болевой стимул также вызывал кратковременное повышение АД с 106,7±0,5 до 129,6±0,4 мм рт. ст. (Р < 0.001 by paired t test). Латентный период гипертензивной реакции составлял 4,45±0,10 с, а её длительность - 25,19±0,27 с, что достоверно отличалось от подобных параметров активности А5 нейронов и РДН (Р<0,001 в обоих случаях by unpaired t test).

Рис. 2. Влияние термической стимуляции болевых рецепторов на артериальное давление (АД), разряды диафрагмального нерва (РДН) и активность норадренергического А5 нейрона моста крысы. А - длительность болевого стимула (верхняя линия, tail-flick тест). Вертикальная линия - 50 мкВ. Б - графические данные. *** - Р < 0.001 относительно РДН и норадренергических А5 нейронов

Обсуждение

В нашей работе продемонстрировано, что в ретикулярной формации каудального вентролатерального моста/А5 область у взрослых крыс локализованы нейроны, активировавшиеся на гипоксию, с низкой регулярной частотой разрядов и длительностью потенциалов действия более 0,6 мс. Данные свойства и местоположение позволяют с большой вероятностью отнести эти клетки к норадренергическим [9]. У взрослых крыс микроинъекция глутамата в область А5 моста достоверно увеличивала время (tail-flick reflex) болевого рефлекса отдергивания хвоста [8]. Также существуют анатомические данные, указывающие на участие нейронов зоны А5 в механизмах ноцицепции. Показано, что аксоны норадренергических А5 клеток имеют проекции в задние рога спинного мозга, структуры которых принимают участие в механизмах ноцицепции [10]. В то же время другие исследователи выявили лишь слабые реакции норадренергических А5 нейронов на механоноцицептивную стимуляцию [9]. В проведённых нами опытах все норадренергические А5 нейроны, протестированные на термический болевой стимул (tail-flick тест), сильно увеличивали залповую активность (в 5-6 раз), так же как при гипоксии. Это показывает важную физиологическую роль норадренергических А5 клеток в механизмах регуляции вегетативных функций при боли. Мы предполагаем, что высокая чувствительность норадренергических А5 нейронов к болевым раздражителям является часто встречающимся или постоянным их свойством, как и чувствительность к гипоксии. Возможно, что такая разница в реакциях норадренергических А5 клеток на механо- и термоноцицептивный стимулы связана с тем, что щипок лапы (механоноцицептивный стимул) действует очень кратковременно и не избирательно раздражает различные типы рецепторов поверхностной и глубокой чувствительности.

В наших предыдущих исследованиях [6] было выявлено, что после блокады НМДА-рецепторов в области А5 моста болевой стимул вызывал меньшее повышение АД и большее увеличение частоты РДН у анестезированных крыс. Также мы показали, что нейроны зоны А5 регулируют АД и активность дыхательного центра при участии ГАМК и оксида азота [2; 5]. Воздействие L-глутаматом на тела нейронов области А5 моста вызывало повышение АД и увеличение времени экспирации у крыс, что свидетельствует о тормозном влиянии А5 нейронов на дыхательный генератор и активирующем влиянии на симпатический тонус. В настоящем исследовании выявлено, что латентный период и длительность ответной реакции норадренергических А5 нейронов и РДН на ноцицептивную стимуляцию достоверно не отличались между собой. Это показывает, что норадренергические А5 нейроны активируются во время болевого стимулов одновременно с дыхательным центром и оказывают своё тормозное влияние за счёт моносинаптических связей с каудальным отделом вентральной дыхательной группы в течение всего периода действия болевого раздражителя. Также норадренергические А5 нейроны были активны в первую половину болевой реакции АД (фаза подъема), что свидетельствует о контроле норадренергическими А5 клетками периода повышения АД при ноцицептивной стимуляции.