Введение
В современных условиях назрела необходимость формирования качественно новых методических подходов оценки эффективности инвестиций, учитывающих риски, а также неполноту и/или неточность исходной информации.
В настоящее время существуют различные подходы к оценке рисков. Особый интерес представляет теория нечеткой логики (fuzzy logic), определяющая современный подход к описанию бизнес-процессов, в которых присутствуют неопределенность и неточность исходной информации. В [3] рассмотрено применение формализма нечеткой логики к оценке эффективности инвестиций в информационные системы предприятия. Для описания проекта были выбраны следующие параметры: чистая текущая стоимость (NPV), внутренняя норма рентабельности (IRR), срок окупаемости проекта (РВ), учетная норма рентабельности (ARR), индекс рентабельности инвестиций (PI). Каждому параметру соответствовала нечеткая переменная с заданной функцией принадлежности. Значение выходной переменной определяло вероятность эффективности проекта. В [4] аналогичный алгоритм был применен к оценке эффективности инновационного проекта внедрения передвижных отделений почтовой связи (ПОПС) в Калужской области [1].
Одной из основных проблем применения нечеткой логики является выбор функций принадлежности нечетких переменных. Основными видами функций принадлежности являются треугольные, трапециевидные, кусочно-линейные, гауссовы, сигмоидные и другие функции. Заметим, что выбор функции принадлежности конкретной переменной представляет собой плохо формализованную задачу, решение которой основано на интуиции и опыте.
В настоящей работе рассмотрены примеры выбора функций принадлежности нечетких переменных. В качестве алгоритма нечеткой логики применялся алгоритм Мамдани [2]. В качестве среды реализации алгоритма был выбран пакет прикладных программ Mathcad. Детальное описание реализации алгоритмов нечеткой логики в Mathcad дано в [5, 6].
Примеры вычислений
Рассмотрим два примера выбора функции принадлежности для нечетких переменных срок окупаемости проекта РВ и индекс рентабельности инвестиций PI.
В [3] рассматривались инвестиции в информационные системы предприятия. Известно, что через три года начинается моральное старение информационных продуктов, а через 5 лет происходит смена поколения информационных продуктов. Поэтому можно выбрать следующие характеристики функции принадлежности:
- интервал изменения переменной PB равен 5;
- терм-множество нечеткой переменной {High (приемлемый), Low (неприемлемый)};
- функция принадлежности − трапециевидная с параметрами [0 0 3 5] (на рис. 1 показана реализация вычислений в Mathcad).
Из рис. 1 видно, что трапециевидные функции принадлежности задаются четырьмя точками, характеризующими трапецию. Кроме того, очевидно, что треугольную функцию принадлежности можно рассматривать как частный случай трапециевидной, у которой совпадают средние точки (на рис. 1 это точки с координатами (0, 1) и (3, 1)). Частным случаем трапециевидной функции является также ступенчатая функция принадлежности.
В [3] реализован более простой случай задания ступенчатой функции принадлежности переменной PB, которая имеет логическое значение «yes», если срок окупаемости проекта меньше пяти, и «no» – в противном случае.
В [4] мы рассмотрели два варианта задания базы правил.
В первом варианте считались допустимыми все проекты с положительным значением чистой приведенной стоимости:
- если NPV или IR низкий, то результат низкий;
- если NPV средний, IRR средний, PB = «yes», AR = «yes» и PI – высокий, то результат средний;
- отвергаются проекты со сроком окупаемости более трех лет или учетной нормой рентабельности менее 20 %. Здесь возможны два варианта: 1) данные проекты отвергаются в процессе предварительного анализа и не обрабатываются на основе нечеткой логики; 2) для переменных РВ и ARR задаются «ступенчатые» функции принадлежности, которые равны нулю на соответствующих интервалах;
- если PB и ARR имеют логическое значение «да» и PI – высокий, то результат высокий.
Во втором варианте последнее правило имело вид:
- если NPV высокий, а PB и ARR имеют значение «да» и PI – высокий, то результат высокий.
Очевидно, что первый вариант является более «мягким», а второй - более «жестким». Первый вариант основан на обычно используемом в учебниках по финансовой математике правиле о принятии проекта с положительной NPV. Во втором варианте предъявляются некоторые требования к значению NPV. Далее мы будем рассматривать вычисления именно по этому варианту.
Чтобы продемонстрировать влияние вида функций принадлежности, рассмотрим переменную PB с набором значений лингвистической переменной {«Низкий», «Высокий»} с трапециевидными функциями принадлежности с параметрами [0; 0; 1,5; 3] и [0; 0; 1,5; 3] соответственно. Значения «Низкий» и «Высокий» в данном случае говорят о приемлемости срока проекта для заказчика.
Исходя из результатов моделирования в Project Expert [1], мы выбрали интервал изменения переменной NPV от 0 до 2000 тыс. руб. Срок выполнения проекта менялся в интервале от 0 до 5 лет, значение индекса эффективности инвестиций – от 0 до 10. Зададим следующие значения входных переменных:
NPV = 1900; IRR = 12,5; PB = 2; ARR = 37; PI = 9 .
Рис. 1. Пример функции принадлежности для переменной PB
Интуитивно понятно, что данные значения должны соответствовать достаточно высокой эффективности проекта.
Результаты моделирования показаны на рис. 2. В данном случае предполагаемая вероятность эффективности проекта не превысила 60 %. Из рис. 2 видно, что это связано с тем, что при таком выборе функций принадлежности вклад функции «Низкий срок окупаемости» является достаточно весомым.
Заменим трапециевидные функции принадлежности на гауссовы с параметрами [0; 1,5] и [5; 1,5]. При этом область «перекрывания» функций значительно уменьшается, и вероятность эффективности проекта повышается до 70,9%.
Рис. 2. Пример расчета эффективности инвестиций
Рассмотрим аналогично выбор функции принадлежности для переменной индекс рентабельности инвестиций PI [1, 2]. Предполагалось, что значение переменной изменяется в интервале [0, 10] и описывается терм-множеством {«Низкий», «Высокий»}. В [1] для оценки эффективности инвестиций в информационные системы предприятия предлагалось использовать трапециевидную функцию принадлежности с параметрами [0, 0, 5, 10] для нечеткой переменной «Низкий PI» и с параметрами [0, 5, 10, 10] для нечеткой переменной «Высокий PI». Однако расчеты показывают, что в этом случае значение PI слабо влияет на значение выходной переменной, т. к. трапеция является слишком «массивной» и вносит достаточно большой вклад даже при значении PI, близком к нулю. Например, при PI = 1 значение выходной переменной составляет ~65 %. Более реалистичные результаты получаются, если взять гауссовы функции принадлежности.
Заключение
Показано, что вид функции принадлежности может существенно влиять на результаты вычислений с использованием формализма нечеткой логики.
Методика подбора функций принадлежности рассмотрена на примерах оценки эффективности инвестиций в информационные системы и инновационные проекты.
Рецензенты:
Крутиков В.К., д.э.н., профессор, проректор по научно-методической работе НОУ ВПО «Институт управления, бизнеса и технологий», г. Калуга.
Обрубов Ю.В., д.ф.-м.н., профессор кафедры «Высшая математика» Калужского филиала ФГБОУ ВПО «Московский государственный технический университет имени Н. Э. Баумана», г. Калуга.