Сетевое издание
Современные проблемы науки и образования
ISSN 2070-7428
"Перечень" ВАК
ИФ РИНЦ = 0,940

ФОРМУЛА ЗНАНИЙ – ДИДАКТИЧЕСКАЯ ИНТЕРНЕТ ТЕХНОЛОГИЯ С ПРИМЕНЕНИЕМ ПОНЯТИЙ АЛГЕБРЫ ЛОГИКИ

Архипова А.И. 1 Шевляк А.Г. 1
1 ГОУ ВПО Кубанский государственный университет, Краснодар, Россия
В статье излагается методика создания новой компьютерной дидактической технологии «Формула знаний». В технологии реализуется межпредметная связь алгебры логики с другими научными дисциплинами. Предназначена для семантического освоения сложных дефиниций научных понятий, алгоритмов и правил учебных действий. Компьютерная программа создаёт две версии: локальную и сетевую. Технология создаётся в сети Интернет на сайте «Соревнования знаний».
математика
«Формула знаний»
дидактическая адаптация
информатика
1. Архипова А.И., Шевляк А.Г., Овчаренко Е.Н. Реализация принципа преемственности обучения математике и физике на основе межпредметных связей и компьютерных технологий // Школьные годы. - 2008. - № 19. - С.
2. Шевляк А.Г., Маркевич Р.А. Фасетные тесты - система заданий для обобщающего повторения математики с применением компьютера// Школьные годы. - 2009. - № 23. - С. 41-43.
3. Шевляк А.Г., Шернина Н.С. Проблема реализации принципа когерентности на разных ступенях математического образования// Школьные годы. - 2010. - № 29. - С. 19-27.
4. Шевляк А.Г. Включение элементов алгебры логики в обучение математики в школе и в вузе// Школьные годы. - 2011. - № 36. - С.
В последнее время многие преподаватели вузов констатируют существенное  снижение уровня  подготовки по информатике выпускников средних школ, а, следовательно, и студентов первых курсов вузов.  Большинство исследователей этой проблемы видят её причину в сложности адаптационных процессов, с которыми сталкиваются вчерашние школьники. Адаптация к новым условиям обучения - это сложный процесс включения студентов в новую образовательную среду, что требует дидактической адаптации.  Существенную помощь в этом процессе оказывает использование межпредметных связей смежных учебных курсов, например,  математики и информатики.

Известно, что для учащихся старших классов и студентов младших курсов большую трудность представляет изучение раздела «Алгебра логики».  Поэтому пропедевтические знания о понятиях этого раздела следует формировать ещё в основной школе. С этой целью нами была создана дидактическая Интернет технология «Формула знаний». Цель технологии - способствовать развитию формально логического мышления учащихся в процессе освоения содержания естественнонаучных дисциплин. При этом главное внимание  следует обращать на освоение основных понятий и правил изучаемых тем, на осознание их внутренней структуры.

Использование в технологии аппарата алгебры логики стало возможным благодаря изменению дефиниций научных понятий, которые должны состоять из элементарных высказываний (логических переменных). А с помощью логических операций и связок  элементарные  высказывания  затем с помощью  технологии  собираются в целостные правила, определения, алгоритмы математических действий и т.д. Это «собирание» отдельных частей в целостное определение или правило осуществляется с применением «формулы знаний», в которой использованы пять логических операций.  Поясним изложенное конкретными примерами из первого курса математики. 

Тема: «Производная»

Элементарные высказывания, выделенные из структуры определений и правил:

a) u(x) и v(x) - дифференцируемые функции в некоторой точке;

b) её производная называется второй производной функции f(x) в точке a;

c) a - точка экстремума функции f(x);

d) сложная функция h(x) = g(f(x)) имеет производную в точке a;

e) функция f(x) непрерывна в точке a;

f) одним из условий применения правила Лопиталя является то, что функции f(x);

g) производная суммы двух функций u(x) и v(x) равна сумме производных этих функций;

h) производная функции f(x) существует в точке a;

i) производная функции f(x) в точке a;

k) угловой коэффициент касательной к графику функции f(x) в точке a;

m) функция f(x) имеет производную в точке a;

n) функция g(x) имеет производную в точке;

p) функции f(x) и g(x) стремятся к бесконечности при x стремящемся к числу a;

q) производная функции f(x) в точке a равна нулю.

Пояснения

Эти задания для любознательных. В них использованы специальные знаки, которые применяются в алгебре логики. Алгебра логики лежит в основе работы компьютера. В ней знания строятся по формулам из отдельных высказываний. При этом высказывания объединяются логическими связками. Прочитайте пояснения.

Высказывание  a‾, читается «не а». Пример. «Число 10 делится на 2». (Это высказывание а).  «Число 10 не делится на 2». (Это высказывание a‾).

  1. Высказывание читается « a и  b». Пример. «Число 10 делится на 2». (Это высказывание а). «Число 5 больше числа 3». (Это высказывание b). " Число 10 делится на 2 и число 5 больше числа 3». Это высказывание .
  2. Высказывание  читается «a и  b». Пример. «Число 10 делится на 2». (Это высказывание а). «Число 5 больше числа 3». (Это высказывание b). " Число 10 делится на 2 и число 5 больше числа 3». Это высказывание .
  3. Высказывание  читается «a или  b». Пример. «Число 10 делится на 2». (Это высказывание а). «Число 5 больше числа 3». (Это высказывание b). " Число 10 делится на 2 или число 5 больше числа 3». Это высказывание  .
  4. Высказывание   читается «Если a, то  b». Пример. «Натуральное число делится на 2 и на 3». (Это высказывание а). «Оно делится и на 6». (Это высказывание b). «Если натуральное число делится на 2 и на 3, то оно делится и на 6».  (Это высказывание ).
  5. Высказывание    читается «a только тогда, когда  b». Пример. «Натуральное число делится на 6». (Это высказывание а). «Оно делится  на 2 и на 3». (Это высказывание b). «Натуральное число делится на 6 только тогда, когда  оно делится на 2 и на 3».  (Это высказывание ).

Используемые логические связки: ЕСЛИ, ТО, И, НЕ, ИЛИ, ТОЛЬКО ТОГДА, КОГДА. 

Приведем примеры составных высказываний, полученных по «формулам знаний»:

1. Если u(x) и v(x) -дифференцируемые функции в некоторой точке, то производная суммы двух функций  и  равна сумме производных этих функций (истинно).

2. Если функция f(x) имеет производную в точке a, то функция f(x) непрерывна в точке a (истинно).

3. Если функция f(x) не непрерывна в точке a, то функция f(x) имеет производную в точке a (ложно).

4. Если функция f(x) имеет производную в точке a и функция g(x) имеет производную в точке f(a), то сложная функция h(x) = g(f(x)) имеет производную в точке (истинно) и т.д.

Рис.1. Интерактивная версия теста «Формула знаний»

Особенность этой технологии в том, что она создаётся в сети Интернет, на сайте «Соревнования знаний». При этом компьютерная программа создаёт две версии: локальную и сетевую. 

В настоящее время актуально использование дистанционных форм обучения, что создает условия для эффективного и оперативного контроля  преподавателем выполнения домашних заданий, а также для опережающего освоения программных тем учебного курса. Одним из важных факторов является формирование познавательного интереса и мотивации учения, так как современные студенты отдают предпочтение не традиционным формам учебной деятельности, а самостоятельной работе с применением новых информационных компьютерных  технологий.

Рецензенты:

  • Шапошникова Т.Л., д.п.н., кандидат физико-математических наук, профессор кафедры Кубанского государственного технологического университета, г. Краснодар.
  • Красина И.Б., д.т.н., профессор Кубанского государственного технологического университета, г. Краснодар.

Работа получена 24.10.2011.


Библиографическая ссылка

Архипова А.И., Шевляк А.Г. ФОРМУЛА ЗНАНИЙ – ДИДАКТИЧЕСКАЯ ИНТЕРНЕТ ТЕХНОЛОГИЯ С ПРИМЕНЕНИЕМ ПОНЯТИЙ АЛГЕБРЫ ЛОГИКИ // Современные проблемы науки и образования. – 2011. – № 5. ;
URL: https://science-education.ru/ru/article/view?id=4874 (дата обращения: 24.09.2021).

Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»
(Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления)

«Фундаментальные исследования» список ВАК ИФ РИНЦ = 1.074