Колибактериоз - общее название группы инфекций, вызываемых кишечной палочкой Escherichia coli и, реже, другими эшерихиями - E.paracoli, E. fergusonii, вызывающими большую группу разнообразных заболеваний человека и животных [1; 2]. В настоящее время колибактериоз остается одним из серьёзных заболеваний сельскохозяйственных животных [1]. В животноводстве заболевание приводит к значительной гибели молодняка и большим потерям привесов у взрослого поголовья [3].
Широкая распространённость вирулентных штаммов кишечной палочки и разнообразие серологических и токсигенных свойств бактерии осложняет создание универсальной вакцины против данного заболевания [1; 4; 5]. В последние годы в качестве живой вакцины успешно применяется слабовирулентный α-гемолитический штамм E. coli Б-5, иммунизация которым приводит к формированию устойчивого антитоксического иммунитета [6; 7]. Однако использование живых вакцин может быть опасно при иммунодефицитных состояниях и связано с интродукцией в окружающую среду потенциально опасного микроба [5].
Одним из перспективных подходов к профилактике колибактериоза является применение субъединичных вакцин [8; 9; 10]. Для повышения иммуногенности субъединичных вакцин используются различные адъюванты: ланолин, фосфат и гидроксид алюминия, хлорид и фосфат кальция, силикаты, нуклеотиды, полианионы и др. [11]. Перспективным направлением в вакцинологии является использование адъювантных свойств различных наночастиц [12; 13]. Так, для иммунизации против колибактериоза были использованы частицы селена, связанные с антигенами E. coli Б-5, что повышало выживаемость мышей на 50% в сравнении со стандартным формалинизированным анатоксином культуры E. coli Б-5 при летальном заражении [14].
Активность ряда ферментов крови является индикатором иммунологического статуса и биохимического гомеостаза организма животного. К ним относятся такие ферменты, как аспартатаминотрансфераза (АСТ) и креатинкиназа (КК), отражающие интенсивность аэробных процессов окисления, а также аланинаминотрансфераза (АЛТ) и лактатдегидрогеназа (ЛДГ), свидетельствующие о направленности метаболизма [15]. В здоровом организме повышение активности АЛТ свидетельствует об активизации пластических процессов. Повышение активности АСТ свидетельствует о преобладании энергозатратных процессов, в том числе при иммунном ответе организма на внедрение патогена и т.д. КК стимулирует процессы окислительного фосфорилирования в митохондриях [16]. Активность ЛДГ в крови повышается при энергозатратных процессах, требующих восполнения питательных веществ, а соотношение АСТ/ЛДГ отражает соотношение аэробного и анаэробного окисления углеводов [16]. Отношение АСТ/АЛТ, или коэффициент де Ритиса, отражает баланс энергетического и пластического обмена [16]. Для оценки сбалансированности метаболических процессов в организме животного предложен также индекс ферментемии (ИФ): ИФ = АСТ/АЛТ + АСТ/ЛДГ + КК/ЛДГ [15; 17; 18]. Показано, что чем ниже значение ИФ в крови животного, тем выше активность анаболических процессов [15].
Помимо иммуностимулирующего, у любой вакцины имеются побочные эффекты, в частности нарушения метаболического гомеостаза, которые следует учитывать при иммунизации животных [19; 20]. Ранее было показано, что биохимическое состояние макроорганизма сказывается на заражении и исходе бактериального заболевания [15; 16; 18]. Инфицирование цыплят-бройлеров штаммом Е. coli Б-5 приводит к увеличению в крови активности КК, значений коэффициента де Ритиса и ИФ, снижению активности АЛТ и ЛДГ [16]. При инфекционных заболеваниях, вызванных различными токсигенными микроорганизмами, наблюдается повышение ИФ и коэффициента де Ритиса, что обусловлено интенсификацией окислительного фосфорилирования [16]. Повышение активности АСТ в крови иммунизированных животных прямо корреллирует с метаболической активностью лейкоцитов, рост активности КК указывает на защиту клеток от цитолиза [16], т.е. изменение активности ферментов является не только маркером течения инфекционного процесса, но может играть защитно-компенсаторную роль [21].
Для коррекции метаболических эффектов, вызванных вакцинацией, может быть полезно применение модуляторов метаболизма [22]. Одним из возможных усилителей протективного эффекта является соматотропный гормон (СТГ), стимулирующий анаболические процессы [23]. В силу сказанного логично предположение, что коррекция биохимического состояния организма путём введения СТГ параллельно с вакцинацией животных против колибактериоза может приводить к росту протективного эффекта иммунизации и снятию её побочных эффектов.
Цель исследования состояла в оценке повышения протективности иммунизации животных против колибактериоза культурой E.coli Б-5 с восстановленным селеном, несущей клеточные и экстрацеллюлярные антигены, путем одновременного введения соматотропного гормона и выяснении сопутствующих биохимических последствий иммунизации.
Материал и методы исследования. В работе использовали штамм E. coli Б-5 из музея культур Саратовского научно-исследовательского ветеринарного института, применяющийся в качестве вакцинного [7].
Приготовление культуры с восстановленным селеном, несущей клеточные и экстрацеллюлярные антигены E. coli Б-5 (КВС). 10 мл селенитового бульона (НПО «Питательные среды», Россия) инокулировали суточной агаровой культурой E. coli Б-5 (1 млрд КОЕ/мл) и культивировали в течение 18 ч (37 °С). Для восстановления остаточного селенита в культуру вносили 400 мкл 30% тиосульфата натрия до конечной концентрации 1.2% и инкубировали в течение 2 ч (37°С).
Исследование проводили на беспородных кроликах-самцах весом 3,5±0,2 кг, формировали 4 группы животных по 6 голов. Животных одной группы иммунизировали КВС в дозе 0.1 мл/кг веса, подкожно, двукратно с интервалом в неделю (группа «КВС»); другим подкожно вводили СТГ в дозе 0,067 мг/кг (0,022 ЕМ/кг), 2 раза в день в течение 6 дней (группа «СТГ»); животных третьей группы иммунизировали КВС одновременно с инъекцией СТГ, как указано выше (группа «КВС+СТГ»). Животные четвертой группы получали 0,9% NaCl в объеме 0.1 мл/кг веса дважды в день в течение 6 дней («Контроль»). От животных до начала инъекций и через две недели после их окончания получали образцы сыворотки крови.
В сыворотке крови с помощью полуавтоматического биохимического анализатора Sinnowa BS-3000P с использованием соответствующих наборов реагентов ЗАО «Диакон-ДС» согласно указаниям производителя определяли концентрацию общего белка, глобулина, глюкозы, активность ферментов АЛТ, АСТ, КК и ЛДГ; вычисляли интегральные показатели биохимического статуса - коэффициент де Ритиса и индекс ферментемии (ИФ) [17].
Определение агглютинативной активности сыворотки крови против клеток суточной агаровой культуры E. coli Б-5 проводили в объемной модификации в разведении сыворотки крови 1:50 в физиологическом растворе, полноту агглютинации оценивали в крестах [24].
Определяли способность сыворотки крови поддерживать рост E. coli Б-5 in vitro. Образцы сыворотки крови инокулировали клетками E. coli Б-5 до плотности 10 млн КОЕ/мл, полученные культуры инкубировали 6 ч при 37 ºС. Концентрацию колониеобразующих единиц E. coli Б-5 в культурах определяли высевом на мясопептонный агар. Находили связь роста плотности культуры с биохимическими параметрами крови, используя методы корреляционного анализа – корреляцию Пирсона и множественной корреляции, достоверность различий определяли в тесте Стьюдента [25].
Через 3 недели после начала инъекций все экспериментальные животные были заражены внутривенно летальной дозой E. coli Б-5 (2*109 КОЕ/кг веса). В течение 2 недель после заражения регистрировали гибель животных, по истечении 14 дней выживших животных забивали и производили патоморфологический анализ органов [26].
Результаты исследования и обсуждение. Иммунизация культурой E. coli Б-5 с восстановленным селеном усиливает агглютинирующую способность сыворотки крови в отношении клеток бактерии. Степень агглютинации клеток E. coli Б-5 составила для групп «КВС» и «КВС+СТГ» - «++++», для животных группы «СТГ» - «++», для «Контроля» – «+».
Как иммунизация, так и применение СТГ заметно сказываются на биохимических показателях, причем разным образом (табл. 1).
Таблица 1
Активность ферментов сыворотки крови и значения коэффициента де Ритиса и индекса ферментемии у подопытных животных на 14-й день эксперимента, нКат/л
Группы, n=6 |
АЛТ |
АСТ |
КФК |
ЛДГ |
Коэффициент де Ритиса |
Индекс ферментемии |
СТГ |
293 ± 271 |
717 ±481 |
5248 ±3481 |
3687 ±5521 |
2,44 ±0,18 |
4,06 ±0,36 |
КВС |
295 ±281 |
1052 ±1071 |
9350 ±938 |
4772 ±715 |
3,56 ±0,381 |
5,74 ±0,441 |
КВС + СТГ |
413 ±331 |
682 ±631 |
8595 ±1023 |
5165 ±773 |
1,65 ±0,191 |
3,45 ±0,811 |
Контроль |
353 ±45 |
865 ±85 |
8972 ±1002 |
4968 ±745 |
2,45 ±0,19 |
4,43 ±0,16 |
Примечание: 1 – значение отличается от контроля при p<0,05.
Иммунизация у животных группы «КВС» приводит к росту активности АСТ при снижении активности АЛТ, вызывая повышение коэффициента де Ритиса и индекса ферментемии (ИФ), что свидетельствует о биохимическом сопровождении иммунизации. Инъекции СТГ приводят к падению активности всех ферментов и некоторому, недостоверному, снижению ИФ, что свидетельствует о преобладании анаболических процессов. Введение СТГ при иммунизации приводит к росту активности АЛТ при падении АСТ, мало затрагивая активность остальных ферментов, что приводит к падению значений коэффициента де Ритиса и ИФ в сравнении с контролем. Таким образом, СТГ при иммунизации стимулирует изменение активности комплекса ферментов, стимулирующее анаболические процессы [16].
Данные по влиянию инъекций СТГ и КВС на концентрацию глюкозы, общего белка и глобулинов в сыворотке крови приведены в таблице 2. СТГ вызывал рост концентрации общего белка и глобулина, что свидетельствует о стимуляции анаболизма. Иммунизация КВС приводила к падению концентрации глобулина в сыворотке, но параллельное введение СТГ, снижая концентрацию общего белка, повышало концентрацию глобулина.
Таблица 2
Концентрации общего белка, глобулина и глюкозы в сыворотке крови экспериментальных животных на 14-й день эксперимента
Группы |
Глюкоза, мМ/л |
Общий белок, г/л |
Глобулин, г/л |
СТГ |
6,97 ±1,04 |
56,70 ±6,981 |
15,38 ±2,301 |
КВС |
6,31 ±0,94 |
53,79 ±6,51 |
9,51 ±1,421 |
КВС + СТГ |
6,01 ±0,90 |
43,01 ±3,451 |
18,01 ±2,701 |
Контроль |
6,15 ±0,92 |
48,40 ±3,26 |
13,76 ±2,06 |
Примечание: 1 – значение отличается от контроля при p<0,05.
Плотность колониеобразующих единиц в культурах E. coli Б-5 на сыворотке крови in vitro на 6-й час инкубации составила для группы «КВС» 327±5, для «КВС + СТГ» 27±1, для группы «СТГ» составила 248±4 и для контроля – 177±3 миллионов КОЕ/мл. Неожиданным фактом является более сильный рост E. coli Б-5 в сыворотке крови животных, иммунизированных только культурой с восстановленным селеном, сыворотка животных, получавших СТГ, также хорошо поддерживала рост бактерии. Однако сыворотка крови животных, параллельно получавших КВС и СТГ, поддерживала рост хуже, чем сыворотка контрольных животных, т.е. вакцинация КВС совместно с инъекциями СТГ снижает пригодность сыворотки крови для роста E. coli Б-5.
Корреляционный анализ плотности колониеобразующих единиц E. coli Б-5 в культурах на сыворотке крови для всех животных, независимо от иммунизации или инъекций СТГ, выявил сильную связь роста с активностью АЛТ (табл. 1) и слабую - с концентрацией глюкозы в сыворотках (табл. 2). Корреляционный коэффициент Пирсона для пары КОЕ/АЛТ составил -0,97 (p<0.05), для пары КОЕ/глюкоза +0,54 (p>0.05), коэффицент множественной корреляции для плотности КОЕ с АЛТ и концентрацией глюкозы составил 1,00 (p<0.01). Таким образом, рост бактерии в сыворотке контролируется как глюкозой, так и активностью АЛТ. Ранее для Staphylococcus aureus было показано отрицательное влияние активности АЛТ на рост бактерии в сыворотке крови, что связано с отрицательным влиянием продукта активности фермента – пирувата – на скорость размножения клеток [27]. S. aureus обладает смешанным аэробно-анаэробным метаболизмом, подобным метаболизмом обладает и E. coli Б-5, что может объяснить отрицательное влияние активности АЛТ на рост последней, и рост E. coli Б-5 в сыворотке экспериментальных животных контролируется не только концентрацией специфических иммуноглобулинов, но и ферментемией сыворотки.
СТГ активизирует анаболизм, что сказалось на приросте массы тела животных группы «СТГ» на 0,08 ± 0,01 кг за 14 дней эксперимента. Вес кроликов, иммунизированных КВС, уменьшился, снижение веса составило 0,25 ± 0,03 кг. У животных остальных групп также наблюдались отрицательные приросты массы тела, для «КВС + СТГ» составившие 0,10 ±0,02 и для «Контроля» – 0,05 ±0,01 кг. Снижение веса в группе «КВС + СТГ» было меньше, чем в группе «КВС», что свидетельствует об анаболическом действии СТГ при иммунизации.
Выживаемость при заражении летальной дозой клеток E. coli Б-5 составила 50% для животных, иммунизированных КВС; 0% для животных, получавших СТГ, и 100% при одновременном введении КВС и СТГ, что свидетельствует об иммуностимулирующем эффекте соматотропного гормона.
По истечении 20 дней после заражения произвели патоморфологическое обследование выживших животных. У кроликов группы «КВС» наблюдались круппозная пневмония, регионарный лимфонодулит и признаки гипертермии, у животных группы «Sе бульон+СТГ» обнаружена только гиперемия легких. Таким образом, СТГ может ослаблять остаточные явления и ускорять клиническое выздоровление при колибактериозе.
Заключение
Протективность иммунизации кроликов культурой E. coli Б-5 с восстановленным селеном при летальном заражении составляет 50%. Использование соматотропного гормона повышает протективность иммунизации до 100% и уменьшает остаточные явления у выживших животных, нормализирует метаболизм и вес при иммунизации, корректируя ряд биохимических показателей. Таким образом, применение СТГ и восстановленного селена в качестве адъюванта может быть перспективным при борьбе с колибактериозом.
Библиографическая ссылка
Габалов К.П., Тарасенко Т.Н., Галкина О.А., Фомин А.С., Рюмина М.В., Видягина О.С., Староверов С.А., Волков А.А. СОМАТОТРОПНЫЙ ГОРМОН КАК СРЕДСТВО ПОВЫШЕНИЯ ПРОТЕКТИВНОСТИ ИММУНИЗАЦИИ ПРОТИВ КОЛИБАКТЕРИОЗА СЕЛЕНОВЫМИ НАНОЧАСТИЦАМИ, НЕСУЩИМИ АНТИГЕНЫ ESCHERICHIA COLI // Современные проблемы науки и образования. – 2017. – № 5. ;URL: https://science-education.ru/ru/article/view?id=26983 (дата обращения: 16.02.2025).