Введение
Физико-химические и кристаллизационные процессы в керамических массах с минерализующими добавками определяют характер изменения вязкости образующейся жидкой фазы, а также соотношения кристаллической и жидкой фазы, что отражается на изменении вязкости системы в целом [1; 2].
Применение минерализующих добавок является во многих случаях определяющим фактором улучшения и направленного регулирования свойств керамических материалов широкой номенклатуры. Механизм действия минерализаторов во время реакций минералообразования в керамических дисперсных системах требует дальнейшего серьезного изучения [1-3; 5].
Выбор минерализующих добавок сводится к эмпирическому подбору состава ускорителя спекания. Данный подход не обеспечивает оптимизации принимаемых технических решений. Отсутствуют технологические критерии и объективная оценка эффективности действия минерализаторов, что сдерживает их применение, в том числе и отходов промышленности. Нет общепризнанного объяснения механизма действия минерализаторов в реакциях минералообразования керамических материалов, протекающих при образовании и присутствии жидкой фазы.
Положительное действие минерализаторов нельзя относить только к ускорению образования жидкой фазы, так как необходимо учитывать изменение и других факторов (вязкости, строения расплава и др.). Как отмечают многие исследователи [1-3], положительное действие минерализаторов определяется не только ускорением образования жидкой фазы в керамических дисперсных системах, но и реологическими свойствами жидкой фазы. Не дает объяснения механизма действия минерализаторов снижение вязкости жидкой фазы и вязкости системы в целом как определяющего фактора интенсификации процессов формирования керамических дисперсных структур.
Не находят подтверждение взгляды, в соответствии с которыми снижение температуры образования жидкой фазы за счет и в присутствии минерализатора является решающим фактором активизации протекающих реакций.
Наиболее приемлемыми являются взгляды, по нашему мнению, согласно которым активизация процессов в минерализованной жидкой фазе определяется термореологическими свойствами собственно минерализаторов [4]. Однако нельзя исключать, что только совокупность указанных проявлений определяет активизацию реакций фазообразования керамических дисперсных структур.
Материалы и методы исследований
Исследован низкосортный полиминеральный суглинок Сибирского региона, характеризующийся низким содержанием глинистых частиц. Суглинок характеризуется содержанием глинистых минералов монтмориллонита (d/n=1,530; 0,450; 0,255 нм), каолинита (d/n=0,714; 0,357; 0,237 нм) и гидрослюды (d/n=0,998; 0,447; 0,256 нм). В связи с низким содержанием глинистых частиц (до 20%) суглинок нуждается в улучшении и направленном регулировании его физико-химических и технологических свойств. Химический состав исследованного глинистого сырья приведен в таблице 1.
Таблица 1 - Химический состав исходного глинистого сырья, масс. %
Наименование сырья |
Содержание оксидов |
||||||||
SiO2 |
Al2O3 |
TiO2 |
Fe2O3 |
CaO |
MgO |
Na2O |
K2O |
п.п.п. |
|
Суглинок садовый |
54,02 |
13,61 |
- |
6,60 |
8,17 |
3,22 |
2,44 |
1,95 |
9,99 |
Исследование динамической вязкости осуществляли методом тела, вращающегося в расплаве на ротационном вискозиметре. Минералогический состав сырьевых материалов и спеченных масс определен на основе данных рентгеноструктурного анализа, проведенного на дифрактометре фирмы Shimadzu XRD-6000. Дифференциальный термический анализ проводили с использованием дериватографа фирмы Netche Q-1500 в атмосфере воздуха.
В качестве минерализующего компонента к полиминеральной низкосортной глине изучены добавки с широким диапазоном реологических свойств в интервале обжига керамических материалов в виде соединений NaF, Na2СO3, LiCl и KCl (динамическая вязкость h= (0,6-6) Па×с) и стеклобоя (h= (10-1014) Па×с), а также отходы промышленности, содержащие комплекс низковязких минерализующих компонентов.
Наиболее многотоннажные отходы алюминиевого производства - шламы газоочистки представлены тонкодисперсным материалом черного цвета с размером частиц от 0,071 до 1,0 мм. Микроскопическое исследование шлама показало, что материал состоит из метаморфизованных угольных частиц графита, криолита, хиолита, корунда, флюорита, нефелина, диаспора и др. На дифрактограмме графит фиксируется по линиям с величиной d/n = 0,338; 0,202; 0,169 нм, корунд - d/n = 0,208; 0,255; 0,160 нм, криолит - d/n = 0,193; 0,275; 0,233 нм. При нагреве шламов наблюдается эндотермический эффект при температуре 50-100 ºС, относящийся к удалению гигроскопической воды; экзотермический эффект при 90-140 ºС связан с адсорбцией угольной массой кислорода из атмосферы; слабый эффект в интервале температур 180-300 ºС относится к процессу дегидратации гидрооксида алюминия; эндотермический эффект в 340 ºС связан с потерей воды кристаллогидратом криолита; интенсивный экзотермический эффект при 350-600 ºС относится к процессу выгорания углеродистой массы; экзотермический эффект с максимумом в 975 ºС относится к кристаллизации стеклофазы.
Химический состав смешанных отходов алюминиевого производства соответствует содержанию следующих компонентов, масс. %: SiO2 - 0,68; Al2O3 - 12,53; Fe2O3 - 1,13; CaO - 0,73; MgO - 0,60; Na2O - 15,89; F- - 16,38; п.п.п. - 51,42. Шламы алюминиевого производства характеризуются низкой вязкостью их минерализующих составляющих NaF, Na2CO3, Na2SO4, NaHCO3, Na3AlF6, AlF3 друг с другом с h900-1000 ºС =(4,9-1,9) Па×с.
Результаты исследований и их обсуждение
Изменение вязкости керамической системы с минерализующими добавками в зависимости от реологических свойств минерализаторов установлено в керамических дисперсных системах из масс на основе полиминеральной глины с добавками (минерализаторы NaF, Na2CO3, стеклобой, а также отходы производства в виде шлама), имеющими температуру плавления ниже оптимальной температуры обжига глины. Кривые изменения вязкости в зависимости от температуры и вида добавки представлены на рисунке 1.
Рис. 1. Изменение вязкости садового суглинка с минерализующими добавками в зависимости от температуры: 1 - чистая глина; 2 - с добавкой стеклобоя; 3 - с Na2CO3; 4 - c NaF; 5 - c добавкой шлама.
Анализ процессов, обуславливающих аномалии на кривых вязкости, свидетельствует о том, что с вводом минерализующих добавок кристаллизационные процессы претерпевают изменения.
Так, появление жидкой фазы за счет эвтектических расплавов, характеризующееся для полиминеральной глины температурой в 875 ºС, сдвигается в область более низких температур: при добавлении стеклобоя на 15 ºС, Na2CO3 - на 70 ºС, NaF - на 75 ºС, шлама - на 80 ºС. Начало появления жидкой фазы, обуславливающее монотонное снижение вязкости для масс с NaF и стеклобоем, совпадает по температуре с эндотермическим эффектом на дифференциальной кривой в 810 и 840 ºС соответственно, отвечающим появлению расплава минерализатора. Перегиб на кривой вязкости, соответствующий превращению продуктов дегидратации в новые кристаллические фазы и характеризующийся для чистой глины в 925 ºС сдвигается с вводом минерализаторов в область более низких температур, за исключением добавки стеклобоя, не изменяющего температуру начала кристаллизации новых фаз.
Добавка Na2CO3 сдвигает эту температуру на 15 ºС, NaF - на 25 ºС, шлам - на 30 ºС. Перегиб на кривых, соответствующих чистой глине, и с добавками NaF и стеклобоя совпадает с экзотермическим эффектом на дифференциальной кривой в 925 и 900 ºС соответственно, отвечающим перекристаллизации новых фаз.
Наиболее интенсивно влияет на характер кристаллизационных процессов, протекающих при обжиге легкоплавкой садовой глины, добавка шлама. Очевидно, это связано с тем, что уже при 800 ºС комбинированный минерализатор из минерализующих составляющих шлама обладает низкой динамической вязкостью h=4,9 Па×с. Добавка шлама в установленном ряде активности минерализаторов и их влияние на физико-химические и кристаллизационные процессы: шлам > NaF > Na2СО3 > стеклобой, опережает отдельные минерализующие составляющие шлама (NaF, Na2CO3), что подтверждает эффективность комбинированных минерализаторов.
Введение добавок NaF и стеклобоя приводит к увеличению интенсивности эндотермического эффекта с максимумом в 130 ºС для садовой глины и сдвигает процесс, обусловленный дегидратацией и удалением межслоевой воды из решетки монтмориллонита в область более низких температур: NaF - на 15 ºС, стеклобоя - на 5 ºС.
По отношению к гидрослюдисто-каолинито-монтмориллонитовой садовой глине установлено значительное снижение температуры диссоциации CaCO3 в присутствии минерализаторов и сдвиг зоны декарбонизации в область более низких температур, о чем свидетельствует смещение максимума эндотермического эффекта, соответствующего данному процессу и характеризующегося максимальным пиком в 805 ºС для глины на 55-60 ºС при добавлении NaF и на 20-25 ºС при добавлении стеклобоя.
Температура плавления минерализаторов NaF и стеклобоя выше температуры диссоциации карбоната кальция CaCO3, что дает основание предположить, что реакции взаимодействия между минерализатором и карбонатом кальция идут в твердой фазе с образованием твердых растворов, способствующих деформации кристаллических решеток реагирующих компонентов и повышению их реакционной способности.
Образование твердых растворов объясняется увеличением амплитуды колебания ионов Na+ вокруг своего геометрического центра при 600-700 ºС и близости величины его ионного радиуса к радиусу Ca2+, что создает условия для внедрения иона Na+ в кристаллическую решетку CaCO3, CaO. На термограммах сразу же после эндотермического эффекта диссоциации CaCO3 обнаружены эндотермические эффекты при температуре 810, 840 ºС в массах с минерализаторами NaF и стеклобоем соответственно, что может быть связано с появлением жидкой фазы при температурах ниже температуры плавления минерализатора за счет образования легкоплавких эвтектик минерализатора и карбоната кальция. Это наблюдение вполне согласуется с данными Н.А. Торопова [4], указывающего на образование жидкой фазы в системе NaF-CaCO3 при 400-600 ºС. Значительно больший по интенсивности пик эндотермического эффекта, связанный с появлением жидкой фазы у масс с содержанием NaF, характеризует более активный процесс ее образования в сравнении с массой глины и стеклобоя, что связано с меньшей вязкостью жидкой фазы, образованной минерализатором NaF в глине в период диссоциации кальцита и, как следствие, увеличением количества расплава за счет активизации процесса растворения в нем карбоната кальция.
Установленное значительное уменьшение интенсивности пика эндотермического эффекта, связанного с диссоциацией кальцита в массе глины и NaF, вызвано перекрытием его экзотермической реакцией образования силикатов кальция, являющимся следствием прямого ускорения воздействия гидрослюды и монтмориллонита глины и содержащихся в них минерализаторов на диссоциацию карбонатов.
Судя по приведенным выше данным, минерализующее действие ряда веществ приводит к ускорению термических превращений в глинистых системах, повышению их реакционной способности, причем эффективность воздействия минерализаторов на данные процессы находится в зависимости от их реологических характеристик в температурном интервале обжига керамических масс.
Нашли экспериментальное подтверждение предположения об эффективности и целесообразности использования комплексных минерализующих добавок, сочетающих минерализаторы с низкой температурой плавления и ускорители спекания с низкой динамической вязкостью в интервале температур обжига керамических материалов для регулирования процесса образования жидкой фазы с оптимальными реологическими характеристиками.
Результаты исследований реологических свойств комплексных добавок минерализаторов (рис. 2, 3), совпадающие с данными Бондаренко Н.В. [4], свидетельствуют о возможности снижения температуры плавления расплава путем сочетания минерализующих добавок с различными реологическими свойствами.
Рис. 2. Зависимость вязкости комплексной добавки от температуры и состава (масс., %): 1 - LiCl 100; 2 - KCl 100; 3 - LiCl 10, KCl 90; 4 - LiCl 30, KCl 70; 5 - LiCl 50, KCl 50; 6 - LiCl 70, KCl 30.
Рис. 3. Зависимость вязкости комплексной добавки стеклобой - NaFот температуры и состава (масс. %): 1 - стеклобой 100; 2 - NaF 100;
3 - стеклобой 50, NaF 50; 4 - стеклобой 75, NaF 25; 5 - стеклобой 25, NaF 75.
Как следует из рис. 2, наиболее эффективна с точки зрения оценки ее реологических свойств, в сравнении с чистыми добавками LiCl и KCl, комбинированная минерализующая добавка в сочетании LiCl и KCl 1:1, образующая расплав при температуре плавления LiCl, в то же время вязкость комплексной добавки приближается к вязкости KCl. Также весьма эффективна комбинированная минерализующая добавка, сочетающая низковязкую добавку NaF (h1000ºC= 2Па×с) и высоковязкую добавку стеклобоя (h800ºC= 109 Па×с), образующая расплав при температуре на 130 ºС ниже температуры плавления NaF. В то же время вязкость комбинированного минерализатора приближается к вязкости NaF(h870ºC=4 Па×с). В соответствии с установленными закономерностями очевидна возможность активации отдельных высоковязких добавок, характеризующихся началом размягчения в области достаточно низких температур 575-875 ºС (эрклез, борат кальция, стеклобой, фритта, цеолит) уже в данном температурном интервале.
Заключение
Установлено изменение вязкости керамической дисперсной системы из масс на основе полиминеральной глины с минерализующими добавками в зависимости от термореологических свойств минерализаторов. Выявлен характер изменения кристаллизационных процессов, обусловливающих аномалии на кривых вязкости.
Экспериментально доказана возможность повышения эффективности высоковязких добавок и перевода их термореологических свойств в оптимальный диапазон путем комбинирования с низковязкими минерализаторами. Сочетание высоковязких добавок, имеющих низкую температуру размягчения с низковязкими минерализаторами, приводит к снижению вязкости и сохранению низкой температуры размягчения.
Рецензенты:
- Толкачев В.Я., д.т.н., профессор, главный технолог ЦПК ООО «Сибирский элемент», г. Красноярск.
- Ступко Т.В., д.т.н., старший научный сотрудник, заведующая кафедрой «Химия» Красноярского государственного аграрного университета, г. Красноярск.