Scientific journal
Modern problems of science and education
ISSN 2070-7428
"Перечень" ВАК
ИФ РИНЦ = 1,006

SYNTHESIS AND STRUCTURE CHARACTERIZATION OF Y2O3: EU NANOPARTICLES

Mikhaylov M.D. 1 Semencha A.V. 1 Kolesnikov I.E. 2 Manshina A.A. 2
1 St.Petersburg State Polytechnical University, St.Petersburg
2 St.Petersburg State University, St.Petersburg
Yttrium oxide doped with Eu ions was synthesized by Pechini method. X-ray diffraction phase analysis has been used for characterization of the synthesized products, identification of phase composition and particle size estimation. Various reasons of diffraction peaks’ broadening were considered. Diffraction peaks’ broadening was found to be related with small coherent scattering region. The crystallite size of the synthesized matter was estimated with Debye-Scherrer equation. Effect of synthesis temperature on the crystallites size was observed. The emission spectrum of nanocrystalline powder synthesized by Pechini method was investigated. Luminescence of Y2O3:Eu 12 mol.% 700oC was observed under UV excitation. The position of the most intensive luminescence band was determined. It was found that the positions of all lines in the spectrum coincide with the known data for the yttrium oxide doped with europium.
roentgen-phase analysis
Pechini method
luminescence nanoparticles
Введение

Синтез и исследование наночастиц, легированных редкоземельными металлами, интенсивно ведется начиная с 2000 г.[4,6] Обычно в качестве прототипа выбирают составы, которые достаточно хорошо изучены как эффективные люминесцентные среды в макрокристаллическом и монокристаллическом состояниях. Такие материалы применяют в дисплеях, системах освещения, в т.ч. в светодиодных источниках света, как приемники рентгеновского излучения в томографах и т.п. Кроме того, исследуются составы, обладающие  уникальными спектроскопическими свойствами, такими как антистоксовая люминесценция, квантовое выжигание и длительное послесвечение, благодаря присутствию  редкоземельных металлов [2]. Комбинация малых размеров кристаллических частиц и наличие легирующих примесей - люминесцентных центров - ионов редкоземельных элементов обеспечивает высокую эффективность и стабильность люминесценции таких материалов, что способствует расширению потенциальных областей их применения.

В данной работе представлены результаты экспериментов по синтезу люминесцентных кристаллических наночастиц оксида иттрия, легированного ионами Eu, а также исследование структуры полученного вещества на основе рентгенофазового анализа.  

Экспериментальная часть

Наночастицы Y2O3:Eu могут быть синтезированы методом разложения металлполимерных композиций, в том числе разновидностью золь-гель метода - методом М. Печини [5]. Этот метод известен как относительно несложный, практичный и недорогой метод синтеза металлоксидных  порошков, в котором полимерный материал, полученный из соли металлов, многоосновной карбоновой  кислоты и многоатомного спирта, подвергается прокаливанию. Образование полимера происходит в результате реакции этерификации между цитратным комплексом металлов и этиленгликолем.

Для синтеза нанокристаллических люминесцентных порошков состава Y2O3:Eu использовались реактивы со следующей квалификацией чистоты: Y2O3 «ос.ч. В3», Eu2О3 «чистый», азотная кислота «х.ч.», лимонная кислота «х.ч.», этиленгликоль «х.ч».

На первом этапе процесса синтеза из оксидов металлов были приготовлены соли редкоземельных металлов - Y (NO3)3 и Eu (NO3)3  - по реакции  1 г смеси оксида иттрия (III) и оксида европия (III) с азотной кислотой, взятой в количестве 5 мл. Реакция проходила при небольшом нагревании с образованием прозрачного бесцветного раствора:

Me2O3 + 6 HNO3    r2Me (NO3)3  + 3 H2O

Полученные нитраты использовали в реакции образования металлцитратного комплекса путем добавления к имеющейся смеси солей редкоземельных металлов лимонной кислоты в количестве 10 мл (оптимальным было выбрано объемное соотношение этиленгликоля и насыщенного водного раствора лимонной кислоты = 1:4). Реакция проводилась при небольшом нагревании:

Me(NO3)3 + 3C6 H8O7     r[Me(C6 H8O7)3 ] (NO3)3

После образования металлцитратного комплекса в реакционную смесь вводится 2.5 мл этиленгликоля:

n[Me(C6 H8O7)3 ](NO3)3+ С2H4(OH)2      →      [Me -C6H7O6-O-CH2-CH2-O-C6H7O6 -Me]n

В результате реакции образовывался вязкий прозрачный гель, который помещали в фарфоровые тигли и прокаливали при различных температурах (700 - 1000 оС). В результате прокаливания получали кристаллические частицы оксида иттрия, легированные ионами Eu. Исследование структуры синтезированных образцов проводилось с помощью рентгенофазового анализа о на рентгеновском дифрактометре Дрон-3 (излучение Cu-Kα).  Качественный РФА полученных продуктов проводился сравнением с дифрактограммами чистых фаз из картотеки JCPDS.

Результаты эксперимента и их обсуждение

Рентгенофазовый анализ является одним из наиболее надежных способов определения состава и структуры исследуемого вещества. На рисунке 1 представлен штрих диаграммы, построенной по рентгеновским спектрам наночастиц, синтезированных при различных температурах. 

pic 

Рисунок 1.  Штрих-диаграммы для порошков Y2O3:Eu, синтезированных при различных температурах.

Как видно из рисунка 1, для всех синтезированных образцов наблюдается хорошее соответствие положения и интенсивности пиков с литературными данными (справочные данные для кубической модификации оксида иттрия Y2O3 (карточка № 43-1036). Полученные результаты свидетельствует о том, что в процессе синтеза во всем диапазоне температур 700 - 1000 о С происходит формирование одинакового фазового состава - кубической модификации оксида иттрия Y2O3.

Известно, что ширина дифракционных пиков зависит от наличия в образце дефектов, механических напряжений и от размера областей когерентного рассеяния (размера нанокристаллов). Таким образом, данные о ширинах дифракционных пиков на рентгенограммах могут быть использованы как для определения размера частиц, составляющих образец, так и механических напряжений в них [1].  На рисунке 2 представлены дифрактограммы, полученные для образцов, синтезированных при различных температурах. Как видно из рисунка 2, изменение температуры синтеза оказывает
значительное влияние на интенсивность и ширину дифракционных пиков.

pic

Рисунок 2. Дифрактограммы образцов Y2O3:Eu, содержание Eu3+ 10 масс. %, прокаленных при различных температурах в течение 20 минут

Согласно Дебаю и Шерреру, связь между шириной пика и размером кристаллов описывается уравнением

f

где В(2θ) - полная ширина пика на уровне половины интенсивности, λ - длина волны (нм), L - размер частицы (нм), θ - угол дифракции.

Второй причиной уширения линий на дифрактограммах могут быть дефекты и несовершенство структуры кристаллов, вызывающие напряжения в кристаллах. Уширение линии, связанное с напряжениями, описывается соотношением:

5

где ε - средняя величина напряжений кристаллической решетки.

В последнем случае для двух и более характеристических пиков на одной дифрактограмме отношения B(2θ)/4tgθ будут близки по значениям между собой. Если же уширение линии связано с присутствием в образце очень малых по размеру частиц, то для двух и более характеристических пиков между собой будут близки значения В(2θ)cos(θ).

В таблице 1 представлены результаты расчетов соотношений B(2θ)/4tgθ и В(2θ)cos(θ) для различных температур, выполненные для двух основных характеристических дифракционных пиков - 29.2о и 48.5о. Анализ представленных в таблице данных позволяет сделать вывод, что уширение линий на дифрактограммах синтезированных порошков Y2O3:Eu 10 % определяется в основном их малыми размерами, что позволяет использовать формулу Дебая - Шерера для оценки размеров частиц.

Таблица 1. Анализ уширения дифракционных пиков

T (оC)

Угол 2θ

B(2θ)

4tg(θ)

B(2θ)*cos2θ

B(2θ1)*tg(θ2)

B(2θ2)*tg(θ1)

B(2θ1)*cos(θ1)

B(2θ2)*cos(θ2)

700

29.2

48.5

0.0178

0.0123

0.0178

0.020

1,44

0,89

800

29.1

48.5

0.015

0.008

0.0144

0.0136

1,88

1,06

850

29.1

48.5

0.0093

0.0064

0.0093

0.0105

1,45

0,88

1000

29.2

48.5

0.0075

0.0038

0.0075

0.0062

1,97

1,20

 

Средние значения

1,7±0,3

1,0±0,1

На основе представленных в таблице 1 данных были произведены оценки размера частиц порошка Y2O3:Eu, синтезированных при различной температуре (рис. 3). Как видно из рисунка, при температуре синтеза 700 оС могут быть получены наночастицы размером 7-8 нм, увеличение температуры синтеза до 1000 оС приводит к формированию более крупных наночастиц 20 - 21 нм.

f

Рисунок 3.  Зависимость размера нанокристаллов Y2O3:Eu от температуры синтеза

Полученные нанокристаллические порошки оксида иттрия характеризовались интенсивной люминесценцией в красной области спектра при возбуждении УФ светом с длиной волны 360 или 250 нм. Для примера на рисунке 4 приведен спектр люминесценции порошка оксида иттрия, содержащего 12 мол.% европия, синтезированного при 700 оС. Положение полос люминесценции в спектре согласуется с известными данными для оксида иттрия как люминофора. Плохо разрешенная тонкая структура спектра люминесценции согласуется с несовершенной структурой нанокристаллов, полученных при низкой температуре [3].

f 

Рисунок 4. Спектр люминесценции нанокристаллического порошка оксида иттрия, легированного европием и синтезированного при 700 оС

Выводы

На основе данных рентгенофазового анализа показано, что синтезированное методом

Печини вещество представляет собой кубическую модификацию оксида иттрия Y2O3, причем состав и тип формируемой фазы не зависят от температуры синтеза. Анализ уширения дифракционных пиков  на основе оценки величины напряжений кристаллической решетки и размера областей когерентного рассеяния показал, что основной причиной уширения являются в основном малые размеры частиц синтезированного вещества, что позволяет использовать формулу Дебая - Шерера для определения их размеров. Обнаружено, что увеличение температуры синтеза от 700 до 1000 оС приводит к росту размера формируемых частиц от 7 до 21 нм.

Рецензенты:

Демидов А. И., д.х.н., профессор физической химии, микро- и нанотехнологий, ФГБОУ ВПО "Санкт-Петербургский государственный политехнический университет", Санкт-Петербург.

Соколов И. А., д.х.н., профессор, зав. кафедрой общей и неорганической химии, ФГБОУ ВПО "Санкт-Петербургский государственный политехнический университет", Санкт-Петербург.

Работа проводилась при финансовой поддержке Министерства образования и науки Российской Федерации в рамках Государственного контракта № 16.513.11.3134.