Известны разнообразные методы десорбции сорбентов комплексообразующими реагентами, растворенным углекислым газом, электрохимическими способами [1; 4; 7].
Однако при десорбции большинства ионообменных материалов наиболее технологически приемлемыми являются растворы минеральных кислот с учетом их доступности.
Амино-карбоксильные амфолиты успешно применяют, в частности, и в процессах глубокой очистки сточных вод с повышенным содержанием катионов жесткости. Эффективная десорбция данных материалов может обеспечить рациональное разделение поглощенных элементов с последующей реализацией товарных элюатов.
Методика исследований и материалы
Использовали амино-карбоксильный амфолит Lewatit TP 207, успешно испытанный для извлечения цветных металлов из предварительно нейтрализованных шахтных вод, следующего состава, мг/дм3: [Cu] - 0,001-0,34, [Zn] - 1,1-19,4, [Fe]<0,1, [Ca] - 231-410, [Mg] - 41,5-159, [SO42-] - 800-1500; pH - 6,4-8,7. Процесс ионообменной доочистки заключался в фильтровании нейтрализованной воды через ионит объемом 1 дм3, загруженный в две последовательно соединенные сорбционные колонны (по 0,5 дм3). Завершали эксперимент при достижении проскока по цинку в очищенную воду (>0,01 мг/дм3) и выводили ионит на регенерацию.
Был исследован процесс десорбции амино-карбоксильного амфолита серной и соляной кислотами с концентрацией 150 г/дм3. Скорость подачи элюента - 1 удельный объем/час, состав элюатов контролировали через 0,2 удельного объема ионита атомно-адсорбционным методом на приборе Percin Elmer «AAnalyst 100». Концентрацию кислоты определяли титрованием.
Результаты и обсуждение
Десорбция ионита соляной кислотой
Рисунок 1. Выходные кривые десорбции ионита Lewatit TP 207 соляной кислотой (I ступень): 1 - цинк; 2 - медь; 3 - кальций; 4 - магний.
Рисунок 2. Выходные кривые десорбции ионита Lewatit TP 207 соляной кислотой (II ступень): 1 - цинк; 2 - медь; 3 - кальций; 4 - магний.
Полученные данные (рис. 1, 2) показали рациональность реализации технологии ступенчатой очистки: на первой ступени медь занимает 8,1% емкости ионита, тогда как на второй только 3,2%, что позволяет более полно реализовать емкость ионита для извлечения цинка.
Несмотря на меньшую селективность амино-карбоксильных ионитов к ионам жесткости (в сравнении с ионами цветных металлов) [6], их поглощение идет существенно (особенно ионов кальция). На первой ступени они занимают 29% (11,08 г/дм3) от общей емкости, а на второй 47% (14,7 г/дм3), что свидетельствует о предпочтительной сорбируемости ионов жесткости с последующим их замещением ионами цветных металлов.
Высокие значения обменной емкости по ионам жесткости являются показателем неполного насыщения ионита цветными металлами. Несмотря на это, происходит проскок по цинку в фильтрат, т.е. ионы кальция и магния, хотя и вытесняются цинком, но не достаточно полно.
Десорбция ионов жесткости происходит при пропускании первых 1,5 удельных объемов ионита. После чего из ионита начинают вытесняться ионы цинка и меди, т.е. на стадии регенерации кислотами возможно селективное разделение ценных компонентов от кальция и магния.
Максимальное содержание цинка в регенерате при элюировании соляной кислотой - 12,6 г/дм3. Основная часть цинка концентрируется в 1,6 удельного объема элюата.
«Растянутость» выходных кривых десорбции цинка при элюировании соляной кислотой может объясняться образованием хлоридных комплексов цинка ([ZnCl4]2-, [ZnCl3]-, [ZnCl2]0) и их повторным поглощением амфолитом Lewatit ТР 207 [2].
Увеличение фильтроцикла по цинку возможно достичь при реализации дополнительных ступеней сорбции. Емкость ионита на первых стадиях будет преимущественно занята тяжелыми металлами (цинком), которые будут вытеснять ионы жесткости на последующие ступени [3]. Однако подобная обработка шахтных вод представляется технологически сложной, и ее реализация возможна только в случае значительных концентраций извлекаемых примесей.
Получение слабоконцентрированных элюатов, а также повышенные объемы (более 4,5) удельных объемов элюента свидетельствуют о неэффективности использования соляной кислоты для десорбции амино-карбоксильных ионитов, насыщенных цинком.
Десорбция ионита серной кислотой
Результаты десорбции ионита с первой ступени сорбционной очистки представлены на рисунке 3.
Рисунок 3. Выходные кривые десорбции ионита Lewatit TP 207 серной кислотой: 1 - цинк; 2 - медь.
Всего в процессе десорбции было получено 2,42 удельного объема элюата, который можно разделить на следующие основные порции:
- первые 0,8 удельного объема - «бедные» элюаты, содержащие включения белого гипсового осадка;
- 0,8 удельного объема - «богатые» элюаты;
- последние 0,82 удельного объема - «бедные» элюаты.
Состав получаемых порций элюатов представлен в таблице 1.
Таблица 1 - Состав получаемых порций элюатов, г/дм3
Количество, удельных объемов |
Cu |
Zn |
Fe |
H2SO4 |
первые 0,8 |
0,001 |
0,019 |
0,0015 |
3,13 |
0,8 |
0,72 |
21,1 |
0,017 |
63,8 |
0,82 |
0,22 |
1,75 |
0,01 |
132,8 |
Степень десорбции после пропускания 2 удельных объемов элюента составила 99,42%.
Средняя концентрация цинка в богатом элюате составила 21,1 г/дм3. Возможно его осаждение после нейтрализации раствора известковым молоком и содой.
Ввиду низкой концентрации меди и практически полного отсутствия железа (удаляют на стадии нейтрализации) в исходной воде, их содержание в ионите, и следовательно в элюате, незначительно (максимальная концентрация 0,97 г/дм3 и 0,027 г/дм3 соответственно). При проведении процесса сорбции повышение содержания железа недопустимо ввиду его высокой сорбируемости ионитами. При повышенной концентрации меди она будет эффективно извлекаться на первой ступени сорбции.
В процессе регенерации ионита наблюдали выпадение в слое ионита и в первых 0,8 удельного объема элюата белого осадка следующего химического состава, %: Cu - <0,02; Fe - 0,013; Zn - 0,013; Ca - 19,9; SO42- - 56,17, что близко к формуле гипса CaSO4∙2H2O.
После десорбции произвели отмывку ионита дистиллированной водой. В процессе отмывки происходило растворение белого осадка в слое ионита и переход кальция в промывную воду из-за большей растворимости гипса в подкисленных растворах (СH2SO4<75 г/дм3). Эти наблюдения подтверждены постепенным уменьшением его концентрации в промывной воде (таблица 2). Сообщается [5], что с серной кислотой образуются растворимые продукты присоединения CaSO4∙H2SО4 и CaSО4∙3H2SО4.
Таблица 2 - Состав растворов, получаемых на стадии отмывки ионита, г/дм3
Удельный объем |
Cu |
Zn |
Mg |
Ca |
H2SO4 |
2 |
0,0024 |
0,0042 |
0,003 |
1,24 |
74,9 |
4 |
- |
- |
- |
0,88 |
9,5 |
6 |
- |
- |
- |
0,74 |
3,9 |
8 |
- |
- |
- |
0,5 |
3,15 |
17,6 |
- |
- |
- |
0,45 |
рН=1,8 |
При регенерации амино-карбоксильного амфолита, насыщенного из сернокислых сред, серная кислота является наиболее экономичным и удобным элюентом.
Выводы
- В условиях проскока по цинку значительную часть емкости ионита занимают ионы кальция, несмотря на низкую селективность амино-карбоксильных амфолитов к ионам жесткости.
- В процессе десорбции ионита минеральными кислотами возможно достигнуть разделения ионов жесткости и ионов цветных металлов.
- Регенерацию амино-карбоксильных амфолитов целесообразно проводить 15-17%-ным раствором серной кислоты.
Рецензенты:
- Рычков В.Н., д.х.н., профессор, старший научный сотрудник, директор физико-технического института ФГАОУ ВПО «УрФУ им. первого Президента России Б.Н. Ельцина», г. Екатеринбург.
- Чумарев В.М., д.т.н., профессор, главный научный сотрудник лаборатории пирометаллургии цветных металлов ИМЕТ УрО РАН, г. Екатеринбург.