Scientific journal
Modern problems of science and education
ISSN 2070-7428
"Перечень" ВАК
ИФ РИНЦ = 1,120

XENOGRAFT MODELS OF HUMAN BREAST CANCER IN EXPERIMENTAL STUDIES

Kit O.I. 1 Vaschenko L.N. 1 Dashkova I.R. 1 Kutilin D.S. 1 Maksimov A.Yu. 1 Goncharova A.S. 1
1 Rostov Research Institute of Oncology
Breast cancer is among the most common malignancies in women, but with timely diagnosis and an adequate personalized anticancer treatment its prognosis is quite favorable. The use of new approaches to the prevention and treatment of this disease is associated with the development and implementation of adequate tumor models. Genetic manipulations with breast cancer cells can broaden the understanding of functions of some proteins involved in oncogenic progression, and also help to detect new tumor suppressors; however, in vitro studies, while reflecting certain aspects of the disease progression, do not reproduce all the features of the malignant process. Xenograft tumor models in immunodeficient animals reflect a more adequate clinical picture compared to cell culture studies. In addition, implantation of cancer cells in mice can provide a better understanding of the importance of a stromal component in the tumor development, and it mimics the human disease more accurately. Various experimental models and methods for their creation have been developed to study the progression of breast cancer. This review discusses methods for xenotransplantation of malignant human breast tumors in immunodeficient animals and shows their advantages and disadvantages in preclinical studies.
xenograft
breast cancer
orthotopic model
heterotopic model
review

Рак молочной железы (РМЖ) остается одной из наиболее актуальных проблем современной онкологии. По статистике, РМЖ во всем мире занимает лидирующее положение по онкозаболеваемости среди женщин [1; 2]. Чаще всего болезнь регистрируется в возрасте 40-85 лет, хотя в последние годы отмечается тенденция к «омоложению» заболевания [3]. Этот вид рака имеет довольно благоприятные прогнозы при условии своевременного выявления и проведения адекватного противоопухолевого лечения [1; 4]. Разработка новых препаратов химио- и таргетной терапии дает реальную надежду на снижение смертности от данного заболевания.          

Значительную роль в улучшении методов лечения РМЖ сыграли исследования in vivo (испытания потенциально эффективных противоопухолевых воздействий на живом организме), что является промежуточным шагом между системами in vitro и клиническими исследованиями. В настоящее время доступно большое количество животных моделей, отражающих различные типы и стадии заболевания, и какую из них использовать, зависит от конкретных исследовательских вопросов. В данном обзоре представлен анализ отечественной и зарубежной литературы, посвященной созданию и применению моделей in vivo в области экспериментальной онкологии. Важно понимать, насколько хорошо модельный организм отображает различные этапы болезни человека; возможно ли имитировать участие иммунной системы и микроокружения опухоли; каковы подходящие модели метастазирования; возможно ли проведение доклинических испытаний лекарств и определение путей, ответственных за лекарственную устойчивость; каковы ограничения и преимущества выбранной концепции.

В данном обзоре представлен анализ отечественной и зарубежной литературы, посвященной разработкам и применениям в доклинических исследованиях наиболее актуальных моделей рака молочной железы человека. Всего было проанализировано 228 публикаций, из них 174 англоязычных и 54 русскоязычных. Поиск тематических статей был выполнен в базе данных Cyber Leninka с использованием следующих поисковых запросов: ксенографт, рак молочной железы, ортотопическая модель, гетеротопическая модель, а также в базе данных MEDLINE, размещенной на www.pubmed.com, с использованием поисковых запросов: xenograft, breast cancer, orthotopic model, heterotopic model.

Моделирование РМЖ на иммунодефицитных мышах

Несмотря на неоспоримую значимость исследований, проведенных на клеточных культурах, результаты экспериментов in vitro не всегда можно транслировать на живой организм, тем более человеческий. Многие биологически активные средства, которые при испытаниях in vitro позволяли надеяться на заметный лечебный эффект, по результатам весьма затратных дальнейших клинических испытаний оказываются неэффективными, что подчеркивает значимость выбора оптимальной экспериментальной модели заболевания у человека при исследованиях in vivo [5; 6].

На сегодняшний день наиболее часто для имитации опухолевого роста применяют мышиные модели, так как это позволяет повторить основные патофизиологические особенности биологии многих злокачественных новообразований [7; 8].

Несмотря на то что идеальная модель in vivo, которая точно повторяла бы клинические особенности онкозаболеваний человека, отсутствует, создание и изучение ксенографтов (гетеротрансплантатов) человеческих опухолей является одним из самых адекватных способов решения многих актуальных задач в современной экспериментальной онкологии [9; 10].

Для получения этих моделей традиционно используют иммунодефицитных животных, таких как мыши SCID, NOD-SCID, NSG, Balb/c Nude, так как вследствие их иммунодефицитного статуса не происходит отторжения чужеродного биологического материала, тем самым обеспечивается успех процедуры ксенотрансплантации [7; 8]. Перечисленные линии мышей отличаются степенью выраженности дефектов иммунной системы. Таких животных получают не только путем близкородственного скрещивания особей с имеющейся спонтанной мутацией гена, обуславливающей иммунодефицитный статус, но и возможен вариант целенаправленного повреждение гена – создание «нокаутных мышей».

В многочисленных работах по созданию и использованию ксеногенных опухолевых моделей продемонстрированы примеры применения как гетеротопического (подкожного) варианта трансплантации опухолевого материала, так и ортотопического (подразумевается инъекция клеток или трансплантация фрагмента злокачественной ткани человека в гистологически соответствующую зону животного) [6; 8; 10].

Ксеногенные опухолевые модели с использованием культуры клеток РМЖ человека

Одна из самых простых и наиболее часто используемых модельных систем основана на инъекции клеточных линий человека иммунодефицитным животным (клеточные ксенотрансплантаты или cell-line-derived xenografts, CDX) [11; 12]. Они чрезвычайно полезны для оценки генетики РМЖ, биологических процессов, характерных для развития злокачественных опухолей и, в некоторой степени, для изучения метастатического потенциала. Такие модели создают посредством инъекции клеток РМЖ под кожу (гетеротопический ксенографт) или в молочную железу мыши (ортотопический ксенографт), что является технически более сложной процедурой, чем создание подкожной опухоли [12]. Микроокружение существенно влияет на скорость роста ксенографта, фармакодинамику лекарственных средств и терапевтическую эффективность – то, что следует учитывать при выборе модели, созданной на основе клеточной линии для доклинического тестирования новых препаратов с вероятным противоопухолевым эффектом [11-13].

Ксенографты, созданные путем инъекции клеточных линий РМЖ, представляют собой относительно однородную массу трансформированных клеток молочной железы и как таковые не отражают гетерогенность человеческих опухолей, которые представляют субпопуляции клеток, которые симбиотически развивались вместе. Вследствие этого использование перевивных ксенографтов является не вполне адекватным инструментом для моделирования микросреды нативной опухоли [11; 14]. Кроме того, некоторые часто используемые клеточные линии, например такие, как MDA-MB-231, получены из высокоагрессивных злокачественных опухолей, что делает их менее полезными для моделирования ранних событий в развитии первичной опухоли. На сегодняшний день хорошо охарактеризованы линии MCF-7, T47D (представляют люминальный подтип А РМЖ), BT474, MDA-MB-361 (люминальный B), SKBR3, HCC202 (HER2 +) и BT20, MDA-MB-231, MDA-MB-468 (тройной негативный) [9; 11; 15]. Перечисленные клеточные линии обладают рядом особенностей и отличительных черт, которые оказывают влияние на динамику роста ксенографта и другие важные характеристики, что, безусловно, необходимо учитывать на этапе планирования и выбора подходящей модели.

Главными преимуществами гетеротопического ксенографта являются простота выполнения методики, удобство оценки динамики роста опухоли благодаря поверхностной локализации, выбор точного молекулярного подтипа, быстрое проявление опухоли [16]. При выборе данной модели следует учитывать следующие ограничения: несоответствующее микроокружение опухоли, однородность выращенных в условиях in vitro клеток, которая не отражает гетерогенность злокачественных опухолей молочной железы, характерных для реальных клинических случаев. Преимуществами ортотопической модели являются сохранение стромальных характеристик опухоли, способность моделировать метастазы. Основным недостатком перевивных моделей, как гетеротопических, так и ортотопических, является отсутствие некоторых свойств, характерных опухолям, растущим in vivo, из-за существования в течение долгого времени клеточных линий в условиях in vitro [11].

Пациентоподобные опухолевые модели

Новым инструментом для решения проблем геномики и гетерогенности опухолей, а также для переноса результатов трансляционных исследований в клиническую практику стали пациентоподобные модели или так называемые PDX (Patient-derived Xenograft) [5; 17; 18]. Их создают путем трансплантации фрагментов опухолевой ткани пациентов иммунодефицитным мышам; ксегенный материал, сформированный в первом поколении животных, может быть перенесен на следующие поколения мышей.

Предпосылкой для создания PDX стала проблема гетерогенности заболевания, характеризующаяся разнообразием на гистологическом и молекулярном уровнях, а также различия метастатического поведения и ответов на лечение [19-21]. Помимо гетерогенности между опухолями в популяции пациентов, последние данные также продемонстрировали значительную внутриопухолевую гетерогенность (то есть между клетками в пределах одного злокачественного очага). Эта неоднородность является существенным препятствием для принятия эффективных решений о тактике лечения и требует разработки персонализированных подходов к терапии, основанных на данных об уникальных особенностях опухоли [19; 22].

Идея персонализированной терапии заключается в том, чтобы предложить каждому пациенту индивидуальный план лечения, соответствующий специфическому статусу и прогрессированию заболевания. Для этого важно полностью определить молекулярную и клеточную гетерогенность РМЖ каждого пациента и соотнести эти характеристики с клиническим поведением опухоли. Очевидно, эти черты должны быть связаны с метастатическим поведением, дифференциальной реакцией на лечение и другими важными аспектами болезни, чтобы «персонализировать» эффективное лечение. Пациентоподобные опухолевые модели имеют большие перспективы в качестве платформы для реализации концепции персонализированной медицины, то есть являются одним из наиболее адекватных инструментов для обнаружения и предварительной проверки методов лечения с учетом индивидуальных особенностей пациента [19].

Значительным преимуществом PDX в сравнении с обычными ксенотрансплантами, созданными при помощи клеточных линий РМЖ человека, является то, что пациентоподобные модели биологически более стабильны и повторяют индивидуальную морфологию опухоли, особенности экспрессии генов и чувствительность, характерные для каждого пациента [23; 24]. PDX также обладают огромным потенциалом для определения прогностических маркеров терапевтического ответа. К недостаткам этих моделей можно отнести непрогнозируемую динамику роста ксенографта, а также низкий процент вероятности развития опухоли из трансплантируемого фрагмента.

Модели метастазирования

Как известно, первичный рост опухоли зачастую не является основной причиной смерти. Смерть у большинства больных раком наступает вследствие метастазирования – миграции раковых клеток из первичного сайта и формирования вторичного опухолевого очага [25]. На сегодняшний день варианты лечения пациентов с метастазами являются трудноразрешимой задачей. Ключевые механизмы, вовлеченные в процесс метастазирования РМЖ, до конца не ясны из-за отсутствия животных моделей, подходящих для имитации миграции опухолевых клеток [26]. Для РМЖ человека характерно два пути образования вторичных очагов: лимфогенный – в регионарные лимфоузлы, и гематогенный – в кости, легкие, печень, яичники, головной мозг [27]. Одним из вариантов изучения гематогенного пути является введение раковых клеток внутривенно (модель называется экспериментальным метастазированием). Разработаны методы, при которых опухолевые клетки вводятся через хвостовую вену, подвздошную артерию или посредством внутрисердечной инъекции, что позволяет проследить формирование злокачественного новообразования в других органах (кости, мозг, легкие, печень и др.) [28-30]. Однако этот подход лишь частично повторяет метастатический процесс, так как он не имитирует проникновение в просвет сосудов опухолевых клеток и начинается с момента, когда они уже свободно циркулируют в кровеносном русле. Помимо внутривенной инъекции, также встречаются работы с описанием протоколов создания модели метастазирования посредством внутрикостной инъекции опухолевого материала иммунодефицитным мышам, а также модели ксенотрансплантации из кости в кость [31]; очевидным недостатком данного способа являются технические трудности в исполнении и высокий процент смертности животных на начальных этапах создания модели из-за сложности манипуляций [27; 32; 33].

Для имитации метастатического процесса предложена модель ортотопической инъекции клеток РМЖ в жировую ткань молочных желез иммунодефицитных мышей линии NSG [25]. Авторы метода считают, что такая модель выгодно отличается от других во многих отношениях: охватывает весь процесс прогрессирования рака от первичного роста опухоли до метастазирования в патологически значимые участки (мозг, легкие, кости), а также может обеспечить хорошую экспериментальную базу для изучения влияния терапевтического лечения на ранних или поздних стадиях заболевания. Кроме того, неоспоримым достоинством является возможность исследования роли белков (например, факторов роста и их рецепторов), полученных не только из раковых, но и стромальных клеток [25].

Гуманизированные модели

Многие новые фармакологические субстанции с вероятным противоопухолевым действием являются по своей химической природе моноклональными антителами, эффективность которых основана на их взаимодействии с компонентами иммунной системы человека [34]. Этот факт заставляет признать классические ксеногенные опухоли не вполне подходящими для проведения доклинических исследований современных препаратов против рака. Для решения данной проблемы было предложено использование гуманизированных моделей – животных, имеющих функционирующие иммунные клетки человек [35-37].

Создание ксеногенной опухоли на гуманизированной мыши позволяет спрогнозировать ответ человеческого иммунитета на злокачественный процесс и тот или иной способ терапии [30]. Помимо трансгенеза, одним из подходов к созданию гуманизированных ксеногенных моделей является совместная трансплантация компонентов человеческой иммунной системы, например CD34 + гемопоэтических стволовых клеток и клеток рака молочной железы, мышам с иммунодефицитом [36]. Кроме того, известен метод пересадки ткани человеческого эмбрионального тимуса и/или печени, содержащей гематопоэтические стволовые клетки, под капсулу почки мышам с тяжелыми формами иммунодефицита (SCID, NOD-SCID, NSG), таким образом, формируя органоид, продуцирующий человеческие Т-лимфоциты [35; 37].

Также примером увеличения количества человеческих компонентов микроокружения опухоли является имплантация животному человеческой костной ткани, фрагментов донорской кости или 3-D тканевых каркасов (матриц), предварительно засеянных человеческими остеобластами [26]. Согласно разработанным протоколам, возможно предварительное заполнение опухолевыми клетками человека тканевых каркасов или скаффолдов с остеобластами или выполнение инъекции в сердце клеточной культуры после того, как костные каркасы устанавливаются в организм животного-реципиента. Преимуществом таких моделей является возможность исследования механизмов взаимодействия между опухолевыми клетками и компонентами кости человека, а к недостаткам на данный момент можно отнести отсутствие стандартизации вследствие внутренней вариабельности образцов донорской кости [30].

Подобные модели востребованы, и с каждым годом появляются различные модификации уже имеющихся протоколов, а также разработаны новые усовершенствованные методы создания гуманизации мышей в связи с увеличением интереса к иммуноонкологии и появлением иммунотерапевтических препаратов. Следующий важный шаг в решении проблемы моделировании рака – это создание PDX-моделей с иммунными клетками человека. Описаны PDX на гуманизированных мышах, у которых тройной негативный РМЖ продемонстрировал ответ на иммунотерапию. К недостаткам таких моделей можно отнести высокую стоимость, а достоинством является возможность проведения исследований иммунотерапевтических препаратов против РМЖ [30].

Заключение

Направление, посвященное изучению опухолевого процесса на животных, активно развивается. Модели рака молочной железы in vivo доказали свою полезность во многих различных контекстах, и ​​дальнейшие работы в этой области будут повышать клиническую значимость исследований, а также способствовать более глубокому пониманию природы заболевания, терапевтического ответа и механизмов развития резистентности.

В настоящее время доступно большое количество моделей, отражающих различные типы и стадии заболевания, тем не менее каждая из них имеет свои преимущества и ограничения, которые необходимо учитывать при планировании исследования. Несмотря на то что на данный момент идеальной модели рака молочной железы человека не существует, накопленные знания и стремительное развитие современных технологий позволяют надеяться на успешное изучение актуальных вопросов онкологии.