В развивающихся странах, в том числе в Российской Федерации, прослеживается четкая тенденция к увеличению заболеваемости опухолями центральной нервной системы (ЦНС) [1]. Частота всех первичных опухолей головного и спинного мозга оценивается от 13 до 18 случаев на 100 000 человек в год [2]. Глиомы являются наиболее распространенными первичными опухолями, и на них приходится около 50% опухолей ЦНС, среди которых наиболее часто встречаются астроцитомы [3].
Термин «глиома» был предложен в 1863 году немецким ученым Рудольфом Вирховом [4]. Сейчас под термином «глиома» понимают часть опухолей нейроэпителиального происхождения, ведущих свое происхождение из астроцитарного или олигодендроглиального ростка. Классификация глиальных опухолей основывается исходя от степени их анаплазии, их разделяют на: медленнорастущие глиомы или глиомы низкой степени злокачественности (low-grade glioma I–II) и (high-grade glioma III–IV) глиомы высокой степени злокачественности, они относятся к быстрорастущим опухолям [5].
Выживаемость у пациентов с опухолями низкой степени злокачественности в настоящее время приближается к 80 месяцам. У больных с анапластической астроцитомой медиана выживаемости составляет порядка 30, а в случае глиобластом – от 10 до 14 месяцев с момента установления диагноза [3].
Несмотря на применение высокотехнологической хирургической помощи, направленной на полное удаление клеток внутримозговых опухолей, достичь последнего не всегда удается. Это связано с рядом факторов, например, опухоль часто локализуется в функционально важных областях мозга, вмешательства в которые могут привести к тяжелой инвалидности пациентов. Кроме этого, глиомы имеют высокую способность к инфильтративному росту, что в момент их удаления затрудняет различение опухолевой ткани и интактной ткани мозга. Даже при удалении всего опухолевого узла в паратуморозной зоне остаются опухолевые клетки, которые дают последующий рост, что приводит к рецидиву заболевания. Поэтому после максимально возможного микрохирургического удаления опухоли проводится лучевая и химиотерапия, а также другие адъювантные методы лечения [6; 7].
На выбор оптимальной комплексной терапии глиальных опухолей в первую очередь влияет правильная оценка степени их злокачественности. Такая оценка делается на основании гистологического исследования опухолевых препаратов, полученных в результате микрохирургического удаления внутримозгового объемного образования или проведения стереотаксической биопсии. Критериями для оценки степени анаплазии выступают: ядерный атипизм, число патологических митозов, пролиферативная активность эндотелия в сосудах и наличие некроза опухоли. В ряде случаев для уточнения диагноза определяют молекулярный тип опухоли, для этого проводят иммуногистохимическое исследование новообразования: измерение активности теломеразы, анализ уровней экспрессии GFAP, VEGF, IGF1 и рецепторов к ним, Ki-67 и других маркеров злокачественных опухолей ЦНС [8; 9].
Ранее гистологический метод для большинства опухолей был основным инструментом диагноза, позволяющим сделать долгосрочный прогноз. Однако при верификации патоморфологического диагноза и определении степени злокачественности глиальных опухолей возникают диагностические ошибки, достигающие от 38 до 64% в ведущих клиниках [10].
Развитие молекулярной нейроонкологии привело к тому, что в настоящий момент молекулярно-генетический профиль опухоли занимает одно из важных мест в классификации опухолей, в первую очередь глиальных, потому что лучше коррелирует с прогнозом, чем гистологическая характеристика опухоли. Об этом свидетельствует опубликованная ВОЗ в 2016 году дополненная гистологическая классификация опухолей центральной нервной системы [11]. Предлагаемые дополнения касаются нейроэктодермальных опухолей. Классификация включает в себя не только гистологическую характеристику опухоли, но и её молекулярно-генетический профиль. По мере накопления данных о генетическом профиле новообразований, имеющих свою прогностическую и диагностическую значимость, классификация, несомненно, будет пополняться и совершенствоваться. Одним из перспективных направлений в ее совершенствовании и, соответственно, в оптимизации комплексного лечения больных со злокачественными супратенториальными глиомами головного мозга является изучение роли микроРНК в процессах онкогенеза головного мозга.
МикроРНК - это короткие некодирующие РНК, около 20-22 нуклеотида, которые участвуют в контроле экспрессии генов, кодирующих белки [12]. Они могут выступать как супрессоры роста опухолей, также могут быть в качестве онкогенов. МикроРНК регулирует большое количество процессов в организме человека. Рост клетки, её пролиферативная активность, инвазия опухоли, её метастазирование, апоптоз, ангиогенез, а также иммунный ответ - все эти процессы регулирует микроРНК [13; 14].
В настоящее время имеются ряд исследований роли отдельно взятых микроРНК в глиомах головного мозга, в которых указывается их диагностическая значимость не только для выявления глиом, но и в установлении степени их злокачественности. Методы исследования, использованные для определения уровня экспрессии микроРНК в большинстве работ, включают: ПЦР в реальном времени, цифровая капельная ПЦР, микрочипы, секвенирование.
К сожалению, опубликованные к настоящему времени работы не содержат четкой систематизации результатов с описанием профилей микроРНК, соответствующих различным гистотипам глиом и степени их злокачественности. Поэтому в нашей статье мы попытаемся провести системный анализ опубликованных данных об экспрессии наиболее исследованных микроРНК.
Из литературных данных известно, что в тканях глиом низкой степени злокачественности, по сравнению с окружающей тканью головного мозга, имеются разнонаправленные тенденции: наряду со снижением уровней экспрессии онкосупрессорных микроРНК-7, -137, -153, -181, -128 [15-17] имеется повышение этих показателей у микроРНК-9 [15-18]. Для онкогенных, микроРНК-21 и -221/222 прослеживается корреляция между уровнем их экспрессии в тканях опухолей и степенью злокачественности глиом [19; 20]. Однако статистически достоверные различия, позволяющие дифференцировать глиомы Grade I от Grade II по уровням экспрессии микроРНК, в настоящий момент не получены [20].
В глиомах высокой степени злокачественности, по сравнению с паратуморозной тканью, отмечены аналогичные тенденции: понижение уровней экспрессии онкосупрессорных микроРНК-7, -31, -137, -153, -181, -128, -124 [19; 21; 22] и, напротив - повышение этих показателей онкогенных микроРНК-21, -23а, -221/222 [19; 23]. При этом уровень экспрессии был значительно выше в тканях глиобластом по сравнению с глиомами Grade III. Такая же картина, но без достоверных различий, отмечена для микроРНК-9 в глиомах Grade III и Grade IV [18].
По уровням экспрессии некоторых микроРНК глиомы разной степени злокачественности не только отличаются от паратуморозной ткани, но и друг от друга. Так, например, в ряде случаев олигодендроглиому можно отличить от глиобластомы. В последней уровни экспрессии микроРНК-21, -132, -134, -155, -218 и -409-5p в три, а микроРНК-128 в четыре раза выше по сравнению с олигодендроглиомами [24].
Рассмотрим роль вышеуказанных микроРНК в развитии глиом головного мозга более подробно.
Онкосупрессорная микроРНК-7 задействована в регуляции Akt/PI3K-зависимого и Raf/Ras/ERK/MEK-зависимого сигнальных путей, контролируя процессы, отвечающие за рост и малигнизацию опухоли: инвазию, пролиферацию, миграцию, апоптоз. Visani M. с соавторами зафиксировали снижение экспрессии этой микроРНК в глиомах по сравнению с паратуморозной тканью [21].
Уровень онкосупрессивной микроРНК-9 достоверно повышен в группах I-III степени злокачественности по сравнению с условно нормальными прилежащими тканями мозга, однако для глиобластом статистически значимых различий выявлено не было [18].
Повышенная экспрессия микроРНК-9 приводит к значительному увеличению миграции клеток в опухолевой ткани и превалированию над их пролиферацией, это связано со снижением экспрессии NF1 и CREB. Напротив, снижение экспрессии микроРНК-9 ведет к преобладанию пролиферации клеток над их миграционной способностью [25]. Работами Gomez G. с соавторами показано, что мишенью для онкосупрессивной микроРНК-9 является ген FOXP1. Повышение его уровня экспрессии in vitro в культуре клеток U251 и U373 приводило к стимуляции их роста [26].
При увеличении экспрессии микроРНК-9 повышается резистентность к химиотерапии (темозоломиду), это связанно с активацией экспрессии компонентов комплекса SHH множественной устойчивости к лекарствам [27].
МикроРНК-21 является одной из наиболее высокоэкспрессируемых микроРНК в клетках человека, однако ее уровень экспрессии еще больше повышается в тканях глиом [19]. Результаты множества исследований микроРНК-21 свидетельствуют об увеличении примерно в 5~15 раз уровня экспрессии в тканях глиом по сравнению с нормой [19; 21]. В работе Ступака Е.В. с соавторами также было установлено увеличение уровня экспрессии микроРНК-21 более чем в 5 раз в образцах глиобластом (Grade IV) по отношению к паратуморозной тканям мозга. Аналогичные данные получены, по сравнению с астроцитомами Grade III, и в образцах глиобластом. Таким образом, повышение уровня экспрессии микроРНК-21 в тканях глиом пропорционально степени их злокачественности [20]. Онкогенный эффект микроРНК-21 в клетках глиомы человека осуществляется через подавление экспрессии генов-супрессоров опухолей, таких как HNRPK, TAp63, JMY, RECK, TOPORS, TP53BP2, DAXX, TGFBR2/3, PDCD4 и TIMP3 [28]. Повышение экспрессии микроРНК ведет к усилению пролиферации, инвазии и снижению апоптоза клеток опухоли. Кроме того, низкий уровень ее экспрессии, по данным атласа ракового генома (ТСGA), слабо ассоциирован с повышенной выживаемостью. Ингибирование микроРНК-21 приводит наряду со снижением экспрессии EGFR к остановке клеточного цикла в фазе G1/S и в конечном итоге к торможению роста опухоли [29].
В глиомах высокой степени злокачественности имеется повышенный уровень экспрессии онкогенной микроРНК-23, приводящей за счет ингибирования экспрессии транскрипционного фактора HOXD10, который регулирует экспрессию ММР-14 к активации инвазии глиальных клеток [23; 30]. Tan X. с соавторами отметили, что увеличение роста глиом связано с повышенными показателями экспрессии микроРНК-23а, зависящей от транскрипционного фактора CREB и подавляющей экспрессию гена PTE [31]. Снижение уровней экспрессии микроРНК-23а и микроРНК-21 in vitro в клеточной линии глиомы U138 уменьшало способность опухоли к формированию колоний [23].
МикроРНК-137 является онкосупрессорной, её экспрессия достоверно снижена не только в олигодендроглиальных опухолях II-III, а также и в глиомах III-IV степени злокачественности [15; 32]. Visani M. с соавторами также получили аналогичные результаты, но достоверная разница была найдена в глиомах только между I и IV степенями злокачественности [33]. В процессе увеличения степени злокачественности глиом (особенно в глиобластомах) происходит снижение уровней экспрессии микроРНК-137, приводящее к активации пролиферации и инвазии клеток опухоли [34].
По данным Xu J. и коллег установлено, что уровень экспрессии микроРНК-153-3р во всех группах глиальных опухолей, по сравнению с контрольной группой, был достоверно снижен [22]. Ее мишенью являются антиапоптозные белки Bcl-2 и Mcl-1.
Для глиом низкой и высокой степени злокачественности характерна активация антиапоптозных механизмов и сигнальных путей, усиливающих выживаемость их клеток. Наряду с этим, микроРНК-153-3р подавляет экспрессию IRS-2-активатора PI3K/AKT-зависимого сигнального пути, также отвечающего за выживаемость клеток этих опухолей. Это свидетельствует о противоопухолевой роли микроРНК-153-3р в развитии данных новообразований [35].
МикроРНК-181а и микроРНК-181b относятся к онкосупрессорным, и дерегуляция их экспрессии вносит свой вклад в проявление злокачественности глиом [27]. Мишенью микроРНК-181а и микроРНК-181b является ген BCL2 [19; 36]. Shi L. с соавторами отмечает снижение уровня экспрессии этих микроРНК в мультиформной глиобластоме, а также отрицательную корреляцию со степенью злокачественности глиом так, что наиболее низкие значения экспрессии достигаются в глиомах II-IV степени злокачественности [16]. Нашими исследованиями также показано, что уровень экспрессии для микроРНК-181b в тканях глиом ниже по сравнению с паратуморозной тканью мозга. Причем его снижение пропорционально повышению степени злокачественности новообразований [20].
Белки p27, p57, а также гены PTEN, TIMP3, PUMA, Сх43, регулирующие клеточный цикл и процессы выживаемости клеток, являются мишенями кластера онкогенных микроРНК-221/222 [37]. В ряде работ была отмечена повышенная экспрессия микроРНК-221, -222 в глиомах [38; 39], способствующая миграции клеток путем понижения регуляции экспрессии PTPμ, а также повышению чувствительности к химиопрепаратам за счет снижения уровня экспрессии MGMT [40]. Нами установлено, что в тканях высокозлокачественных глиом имеется статистически достоверное повышение уровня экспрессии микроРНК-221 по сравнению с условно нормальными прилежащими тканями мозга [20].
МикроРНК-128 – это нейрон-специфическая микроРНК, участвующая в дифференцировке нервной ткани, в злокачественных глиомах, таких как глиобластома. Она выступает как онкосупрессор [17; 41]. Мишенью данной микроРНК выступает фактор транскрипции E2F3a, снижение уровня её экспрессии ингибирует пролиферацию клеток опухоли и клеточный цикл [42]. Zhang Y. с соавторами в своих работах показали, что уровень ее экспрессии в глиомах снижен по сравнению с уровнем в паратуморозной ткани [17; 42].
МикроРНК-124 является онкосупрессивной, она участвует в дифференцировании нейронов. Установлено, что уровень ее экспрессии снижен не только в глиобластомах и олигодендроглиомах, но и в медуллобластомах [43-45]. Уровень экспрессии микроРНК-124 статистически достоверно снижается в глиомах (Grade III) и в глиобластомах по сравнению с паратуморозной тканью [20]. Она регулирует клеточный цикл в фазе G0/G1, а также ингибирует киназу CDK6, которая стимулирует ангиогенез [15; 28], ведущий к возникновению новообразованных сосудов. Последние играют ведущую роль в дальнейшем росте новообразований и их метастазировании [46]. Трансфекция микроРНК-124 в клеточные линии глиом приводит к уменьшению миграции клеток [47].
При исследовании уровней экспрессии микроРНК-31 в тканях глиом высокой степени злокачественности было установлено статистически достоверное их снижение в опухолевой ткани по сравнению с условно нормальными прилежащими мозговыми тканями [20]. В культуре клеток глиомы данная микроРНК ингибирует не только миграцию клеток и опосредованно влияет на активацию транскрипционного фактора NF-kB, ангиогенез, но и уровень Е-кадгерина, связанного с эпителиально-мезенхимальным переходом [48; 49]. МикроРНК-31 выступает в качестве онкосупрессора, и ее уровень может коррелировать с предрасположенностью опухоли к инвазии и метастазированию [20].
Изложенные выше суммированные литературные данные о роли микроРНК в глиомах головного мозга и степени злокачественности глиом мы представили в виде таблицы.
МикроРНК и регулируемые им процессы
МикроРНК |
Уровень экспрессии |
Регулируемые процессы |
||
микроРНК-21 (онкоген) |
Экспрессия повышается в глиомах пропорционально степени злокачественности |
Пролиферация (+), миграция (+), инвазия (+), апоптоз (−), резистентность к темозоломиду (+), радиорезистентность (+) |
||
микроРНК-23a (онкоген) |
Уровень экспрессии повышается в глиомах Grade III и IV |
Прoлифeрация (+), инвазия (+), апоптоз (−), мигрaция (+) |
||
микроРНК-221/222 (онкоген) |
Уровень экспрессии в глиомах повышается Grade I–IV |
Пролиферация (+), инвазия (+), апоптоз (−), резистентность к темозоломиду (+), радиорезистентность (+) |
||
микроРНК-7 (онкосупрессор) |
Уровень экспрессии в глиомах снижается Grade I–IV |
Мигрaция (−), инвaзия (−), радиорезистентность (−). |
||
микроРНК-9 (онкосупрессор) |
Уровень экспрессии повышается в глиомах Grade I, II, III |
Миграция (−/+), пролиферация (+/−), радиорезистентность (+), рост опухолевых клеток (−) |
||
микроРНК 31 (онкосупрессор) |
Уровень экспрессии снижается в глиомах Grade III–IV |
Пролиферация (−), инвазия (−) |
||
микроРНК-124 (онкосупрессор) |
Уровень экспрессии снижается в глиомах Grade III–IV |
Ангиогенез (−), инвазия (−), метастазирование (−), клеточный цикл (−) |
||
микроРНК-128 (онкосупрессор) |
Уровень экспрессии снижается в глиомах Grade I–IV |
Пролиферация (−), ангиогенез (−), апоптоз (+), дифференцировка (+) |
||
микроРНК-137 (онкосупрессор) |
Уровень экспрессии снижается в глиомах Grade III и IV |
Пролиферaция (−), миграция (−), инвазия (−) |
||
микроРНК-153 (онкосупрессор) |
Уровень экспрессии снижается в глиомах Grade I–IV |
Пролиферация (−), апоптоз (+) |
||
микроРНК-181 (онкосупрессор) |
Уровень экспрессии снижается в глиомах Grade I–IV пропорционально степени злокачественности |
Инвазия (−), апоптоз (+), радиорезистентность (+) |
Заключение
К настоящему времени накоплен большой опыт по определению уровня экспрессии микроРНК в тканях глиом головного мозга человека с применением различных методов. Но есть определенные препятствия, которые ограничивают применение этих методов при использовании микроРНК в клинической диагностике. Во-первых, это связано с тем, что многие исследования выполнены на малых группах пациентов с разной гистологической структурой опухолей головного мозга. Во-вторых, глиомы головного мозга являются гетерогенными новообразованиями, что осложняет интерпретацию полученных данных и подбор микроРНК, которые могли бы выступать в качестве диагностических маркеров. В связи с этим важной задачей является стандартизация методов определения уровней экспрессии микроРНК и подбора оптимальных референсных генов. Для получения достоверных данных необходимы масштабные перспективные исследования для определения роли микроРНК в онкогенезе глиом и подтверждении их эффективности, как биомаркеров в диагностике нейроэпителиальных опухолей мозга. Продолжающееся углубленное изучение молекулярно генетических характеристик глиом на основе исследования роли микроРНК в онкогенезе является, как нам представляется, перспективным направлением в определении молекулярных механизмов опухолевого роста для назначения своевременной и адекватной адъювантной терапии в комплексном лечении, а также прогноза течения онкозаболевания.