Scientific journal
Modern problems of science and education
ISSN 2070-7428
"Перечень" ВАК
ИФ РИНЦ = 0,940

GEOMETRY-GRAPHIC CULTURE – FORMING RESULT INNOVATIVE EDUCATIONAL ENVIRONMENT ENGINEERING UNIVERSITY

Yumatova E.G. 1
1 FGBOU VPO "Nizhny Novgorod State Architecture and Civil Engineering"
The article is dedicated to increasing the effectiveness of the geometric and graphic preparation of students in the architectural and construction university. Modern construction is aimed at highly-skilled professionals with comprehensive knowledge, design skills and creative thinking, owning modern information technology modeling and designing. The level of geometric and graphic preparation of students of high school building does not meet the requirements of the market and to the social order of society, based on the formation of the geometric and graphic culture. It is proved that integrative results can only be achieved in the subject learning environment and education. The author formulates a system of professionally significant qualities necessary for students of construction specialties in the field of geometric and graphic disciplines. In this article defines the learning environment as an object of management and control of pedagogical process. Organization of continuous training in the environment is implemented by means of an interconnected approach that contributes to the resolution of contradictions identified. The method of optimizing the learning process through the implementation of an integrative approach to learning means generalized and related projects, forming professionally important qualities. We present the interim results of the experiment.
the environment of teaching and education
geometric-graphic culture
intensive technology training

В распоряжении Правительства РФ от 08.12.2011 N 2227-р «Об утверждении Стратегии инновационного развития Российской Федерации» определены основные направления долгосрочного социально-экономического развития нашей страны на период до 2020 года [1]. Определены приоритетные направления мировой экономики, характеризующейся ускорением технологического развития, – это медицина, атомная отрасль, энергетика и информационные технологии. Очевидно, что ведущая роль в развитии технологических инноваций в строительстве и производстве отводится IT-технологиям. Программа направлена на повышение конкурентной способности экономики и производства в РФ. Новая стратегия предполагает создание инновационной системы, комплексно реализующей следующие принципы: во-первых, увеличение инвестиций в исследовательские работы по приоритетным направлениям; во-вторых, подготовка высококвалифицированных кадров, способных проектировать и конструировать новые знания, объекты и технологии. Инновационная экономика востребует инновационную систему образования. Вместе с тем, педагоги и философы справедливо отмечают в настоящее время наличие системного кризиса в отечественной сфере образования. В предыдущей программе развития РФ на период до 2015 года подготовке специалистов высоко уровня не было уделено достаточно внимания, что не позволило обеспечить необходимую системность подхода к развитию инновационной системы страны. В связи с этим необходимо отметить качество подготовки специалистов и бакалавров по естественнонаучным и инженерно-техническим специальностям, которое имеет первостепенное значение для формирования эффективной инновационной системы, не отвечает реалиям сегодняшнего дня. Причин здесь несколько: во-первых, недостаточность финансирования инженерно-технических вузов в конце 20 века – начале 21 века; во-вторых, малоэффективные модели управления учебным процессом из-за несоответствия целей образовательного процесса требованиям инновационной экономики и не достаточно системной организации этого процесса; в-третьих, нехватка современных качественных преподавателей. В результате, на наш взгляд, ключевые для инновационной экономики качества для будущих инженеров, назовем их – «мотивация к инновациям» и «инженерная ответственность», включающие творческую активность, мобильность и желание обучаться в течение всей жизни, личностные свойства будущего инженера – в целом недостаточно развиты по сравнению со странами с развитой экономикой. Отметим, что известные нейрофизиологи и психологи установили взаимосвязь этих понятий: мотивация к инновациям может формироваться не только за счет расширения «знаниевых профессиональных границ» обучаемого и использования современных учебных средств, но формирования общего и профессионально-ориентированного мировоззрения, т.е. социально- и государственно-значимых установок и моделей поведения. Современные требования рынка труда и государства смещают акценты с количества формируемых ключевых компетенций на качество подготовки инженеров, что означает, на наш взгляд, ориентацию на формирование культурного инженера. Отметим, что сущность и структура понятия «геометро-графическая культура» будущего специалиста в строительстве и методы ее формирования в педагогических трудах не достаточно, на наш взгляд, раскрыты. Данные противоречия определили цель исследования – формулирование сущности и структуры понятия «геометро-графическая культура» в контексте непрерывного инженерного образования.

Цель исследования: 1) определение сущности и структуры системообразующего результата инновационной среды обучения, воспитания и развития будущих специалистов инженерного вуза – формирование геометро-графической культуры; 2) определение интенсивных технологий обучения, развития и воспитания для реализации данного фактора в системе.

Материал и методы исследования

Для решения задач исследования были изучены: 1) образовательный стандарт по направлению подготовки «Строительство»; 2) современные требования к подготовке специалистов; 3) теоретические подходы к определению понятий «математическая культура», «информационная культура», «графическая культура», «культура архитектора»; 4) результаты педагогического эксперимента.

Результаты исследования и их обсуждение

В архитектурно-строительном вузе геометро-графическая подготовка осуществляется на занятиях по естественным и техническим дисциплинам, поскольку геометрический аппарат применяется на занятиях по математике, основам архитектурного проектирования, инженерной графике, начертательной геометрии, компьютерной графике, изобразительному искусству, информатике. Достижение интегративного результата в геометро-графической подготовке наиболее эффективно может осуществляться, на наш взгляд, в образовательной среде или системе, объединяющей дисциплины, принадлежащие к разным классам наук. Эффективность проектирования и функционирования такой синтетической среды может достигаться увеличением степени организации и упорядоченности системы, для этого необходимо сформулировать системообразующие связи. Системообразующие связи и отношения между компонентами множества, именуемого системой, реализуют специфическое для системы свойство – единство. Поскольку сложные и высокоорганизованные системы управления и самоорганизации есть целенаправленные системы, то единство социальных систем с точки зрения теории функциональных систем, и в частности образовательной системы или среды, может выражаться в ее общей функции или интегральном свойстве, т.е. результате. Этот фактор обеспечивает целостность системы, причем в системах с обратной связью цель должна совпадать с результатом. Цель образовательной среды – объективный образ желаемого результата ее деятельности с позиции будущего. Формирование междисциплинарной геометро-графической культуры будущего инженера и есть тот внешний системообразующий фактор, обеспечивающий, на наш взгляд, целостность и непрерывность геометро-графической подготовки в техническом вузе.

В философской литературе существуют различные определения культуры, данные следующими авторами: Б.С. Гершунским, В.П. Зинченко [4], Н.Б. Крыловой [7], М.С. Каганом [6], Л.В. Ворониной [3] и др. Как правило, все они совпадают по выделению следующих атрибутов этой категории: глубокое знание и уважение к наследию прошлого, способность к творческому восприятию, пониманию и преобразованию действительности в той или иной сфере деятельности. Известно, что культура обеспечивает возможность сохранения и передачи духовных и материальных ценностей от поколения к поколению, от народа к народу, от общества к личности. Данное понятие не есть инвариант, но как закономерное целое культура обладает специфическими механизмами возникновения, трансляции, трансформации, конкуренции, саморегуляции на основе формирования устойчивых структур и их воспроизведения в других культурных средах. В словаре философских терминов под культурой понимается «совокупность искусственных объектов (идеальных и материальных), созданных человечеством в процессе освоения природы и обладающих структурными, функциональными и динамическими закономерностями (общими и специальными)» [9, с. 271]. Большинство ученых культуру рассматривают в двух аспектах: во-первых, как результат труда деятельности субъекта; во-вторых, с точки зрения образовательно-воспитательного результата. В связи с этим педагог В. П. Зинченко понимает культуру интегративно, как универсальный способ деятельности и как способ целостного освоения мира, противопоставляя ее завершенной сумме знаний и профессиональной сноровке, которыми вооружает людей традиционная система образования. Культура, по мнению педагога Н. Б. Крыловой, также комплексное понятие, включающее культурные средства и технологии деятельности, картину мира, «особенности мировосприятия и мирообъяснения» субъекта [7, c. 112].

Говоря об инженерной культуре в контексте образовательно-воспитательной подготовки в технических вузах, то ее сущность с точки зрения управляемых систем необходимо рассматривать как цель (результат) образовательной деятельности. Цель такой подготовки – сформировать у будущих инженеров такие способы деятельности и мировоззрение, результатом которых станет не только высокий уровень знаний, умений и навыков, но и «мотивация к инновациям» и «инженерная ответственность». Очевидно, что данный уровень подготовки – это не только образовательная задача, но развивающая и воспитательная.

Определим сущность понятия «геометро-графическая культура». Известно, что геометрия в технических вузах – это «образовательный мост» не только между несколькими дисциплинами: математика, инженерная графика, изобразительное искусство и информатика, но и областями знаний – архитектура и строительство. Отметим, что каждое уникальное здание и сооружение представляет собой явление, требующее от специалиста комплексных знаний разработки для каждого элемента объекта инновационных решений, обоснованных большим циклом теоретических и экспериментальных исследований. Поэтому, отличаясь более высокой степенью развития, особенность феномена понятия «геометро-графическая культура» заключается в том, что оно имеет междисциплинарное и синтетическое содержание, являясь результатом интеграции компонентов нескольких профессиональных культур. Это межпредметное содержание геометрии было замечено еще в древности греческими математиками, а также художниками 17–19-ого веков, например Г. Эшером и А. Дюрером. На своих работах Г. Эшер наглядно отразил сущность линейных преобразований – группу движений, а на работах А. Дюрера графически показан геометрический смысл нелинейных преобразований – проективных. Вопросы межпредметной интеграции начертательной геометрии, инженерной и компьютерной графики обоснованы и реализованы в высшем техническом образовании в научных работах И. В. Шалашовой, М. В. Лагуной [8], М. Л. Груздевой [5]. Исследуя сущность понятия «графическая культура», ученые считают, что это комплексное понятие, предполагающее формирование высокого уровня знаний и умений человека в области начертательной, инженерной и компьютерной графики, способность к творческой деятельности. Владение графической культурой реализует субъективную потребность к творческой самореализации и саморазвитию.

Сущность понятия «математическая культура», в частности «геометрическая культура», обоснована в работах педагогов и математиков, таких как Г. Д. Глейзер, В.А. Далингер, В.И. Глизбург, которые в своих исследованиях заключают, что математическая культура проявляется в умении использовать математический аппарат в различных сферах науки, техники, производства и экономики. Такие умения и навыки выражаются в способности будущего инженера применять методы математического моделирования в научно-исследовательских прикладных и опытно-конструкторских работах, развивать и использовать инструментальные средства компьютерной графики, такие как мультимедиа и автоматизированного проектирования, на основе построения информационных математических моделей.

О воспитании «информационной культуры» может идти речь, если студент знания и умения из области информатики начинает активно применять при обучении другим дисциплинам [5, 10]. Сюда можно отнести навыки систематизации и алгоритмизации информации, навыки работы с информационными массивами (таблицами, списками, словарями), навыки оптимального поиска информации, умение проектировать  компьютерные информационные эффективные модели в различных дисциплинах. Причем, речь идет не только об использовании определенных интеллектуальных и технологических умений и навыков, но и воспитательных результатах, полученных благодаря изучению разнообразной информации.

Понимание культуры архитектора связано с задачами, стоящими перед зодчими современной России.   Общая задача архитектора – создать геометрическую форму. Это творческая художественная и инженерная работа, которая в большей степени основана на интуитивном знании и чувстве, чем на сознательных расчетах и решениях. Сооружение, построенное архитектором, несет функциональную и эстетическую нагрузки, которые тесно связаны с социальными и культурными устоями и требованиями общества. Поэтому  эмоциональная реакция общества на творение архитектора – это не только результат эстетического воздействия формы на визуальное восприятие (симметрия, цвет, баланс), но и соотнесение этого результата с общей мировоззренческой позицией граждан России. Требования к подготовке архитекторов определяются современными концепциями построения архитектурно-строительной среды в России. Такие градостроительные среды ориентированы на гуманизацию профессиональной направленности архитектурно-строительного творчества, на индивидуальные аспекты жизнедеятельности человека, проявления его личности в составе определенного сообщества людей и в конкретном месте [1,2]. Проектирование и строительство современных градостроительных сред невозможно без применения информационных технологий. Анализ особенностей современной профессиональной инженерной деятельности в области проектирования и конструирования объектов строительства показал, что проектную и конструкторскую документацию в современном строительном производстве объединяет информационная модель здания или сооружения. Каждый этап проектирования сопровождается углублением детализации информационно-геометрической модели. Построение таких моделей и составляет инновационный способ деятельности проектировщика.

Опираясь на определения понятий «математическая культура», «графическая культура», «информационная культура», культура архитектора, сформулируем структуру междисциплинарного понятия «геометро-графическая культура» специалиста. Структура данного феномена включает три взаимосвязанных комплекса: 1) ценностно-ориентационный; 2) типологический; 3) понятийно-процессуальный. Основные выделенные виды и способы деятельности современного проектировщика и конструктора, потребности общества и государства к результату его деятельности определили содержание каждого элемента геометро-графической культуры. Ценностно-ориентационный комплекс включает: 1) мировоззрение, ориентированное на осознание будущим специалистом своей социальной зоны ответственности, этических и эстетических границ поиска проектно-творческих решений; 2) учебно-познавательную активность (целеустремленность, стремление к саморазвитию и овладению инновационными приемами геометро-графической деятельности). Типологический комплекс содержит творческие конструктивные и пространственные способности по уровням (репродуктивный, частично-поисковый; проблемный; исследовательский). Понятийно-процессуальный элемент предполагает: 1) знание математических, конструктивных и функциональных характеристик технических объектов в решении прикладных задач; 2) свободную ориентацию будущего инженера в среде информационных графических технологий.

Сформулируем организацию и технологии формирования геометро-графической культуры в техническом вузе. В большинстве концепций приобщение к такой целостной культуре является результатом непрерывного образования. Мы в своем исследовании при определении технологии формирования «геометро-графической культуры» специалиста уникальных зданий и сооружений опирались на теорию функциональных систем П.К. Анохина и философско-образовательные концепции Б.С. Гершунского и М. В. Лагуновой, ориентированные на целенаправленный, непрерывно-целостный и многоступенчатый образовательный процесс восхождения социума к все более высоким образовательным результатам средствами интенсивных технологий. В концепциях Б.С. Гершунского и М. В. Лагуновой – это элементарная и функциональная грамотность, образованность, профессиональная компетентность, культура, менталитет. Такое упорядочение и интенсификация образовательной деятельности будет способствовать повышению уровня управляемости, организации и развития междисциплинарной образовательной среды, т.е. эффективности ее функционирования и корректировки. Отметим, что особая роль в образовательном процессе формирования культуры должно отводиться творческому развитию и воспитанию в контексте приобщения к мировым и национальным ценностям.

В ННГАСУ для специальности 271101.65 «Строительство уникальных зданий и сооружений» разработана междисциплинарная система геометро-графической подготовки. Данная среда проходит апробацию, начиная с 2012 г. Для поэтапного формирования необходимого уровня геометро-графической подготовки были применены интенсивные технологии обучения, такие как разноуровневые конструктивно-аналитические задачи, межпредметные инновационные проекты, национально-значимое содержание, организация олимпиад по графическим информационным технологиям, предметных экскурсий, тематических выставок и научных студенческих конференций. Предварительные результаты эксперимента показали правильность теоретических положений. Так, подводя промежуточные итоги, уже можно отметить, что: 1) отмечена положительная динамика успеваемости в среднем по геометро-графическим дисциплинам в ЭГ по сравнению с КГ на 18,2 %; 2) повысился уровень развития конструктивно-аналитических и пространственных способностей учащихся в ЭГ по сравнению с КГ на 22,3 %, увеличилось число студентов, ставших победителями и призерами Всероссийского конкурса студенческих работ «Фестиваль науки», больше в 2,1 раза в ЭГ по сравнению с КГ.

Заключение

Высокий уровень знаний, умений, навыков, сформированность социально- и профессионально-ориентированного мировоззрения («мотивация к инновациям», «инженерная совесть») должны стать целью современного высшего инженерного образования в геометро-графической области знания. Такие требования к подготовке инженера в техническом вузе предполагают формирование не просто профессиональной компетентности, а профессиональной культуры. Реализация данного системообразующего фактора на уровне цели (результата) в инновационной среде позволит, на наш взгляд, повысить эффективность управления и функционирования геометро-графической подготовкой в инженерном вузе, за счет повышения упорядоченности структуры системы, выявления инвариантных и вариативных внешних и внутренних междисциплинарных связей, творческой самоорганизации студентов.