Современная транспортная система не стоит на месте и развивается с каждым днем. Независимо от вида и типа транспорта очень большое внимание уделяется безопасности [6]. Постоянно разрабатываются и внедряются все новые системы, позволяющие осуществлять полуавтоматическое или автоматическое управление транспортными средствами и тем самым снизить человеческий фактор до минимума, либо просто помогающие предсказать и даже предотвратить возникновение аварийных ситуаций при ручном управлении транспортными средствами [12]. Но, несмотря на все это, остается много задач, которые не могут решить существующие на данный момент вспомогательные системы.
Издание научной статьи осуществлено при финансовой поддержке Минобрнауки РФ в рамках государственного задания по проекту № 3153: «Проведение теоретических и экспериментальных исследований по разработке перспективных энергоэффективных светодиодных источников оптического излучения и оценка эффективности осветительных установок на их основе».
Обсуждение
Одной из не решенных на данный момент задач является управление транспортным средством в условиях тумана [1, 9]. Туманы состоят из капелек жидкости, образующихся при конденсации пара или распылении жидкости. Туманы, в особенности природные, состоят из сравнительно крупных капелек, диаметром до 10 мкм и выше, и счетная концентрация их обычно невелика [10].
Подсчитано, что в европейской части страны в течение года насчитывается около 40 туманных дней. Туман, как и темное время суток, кроме ухудшения общей видимости на дороге, существенно снижает истинные расстояния до объектов и скорость движения транспорта. Дистанция до встречного автомобиля в тумане всегда кажется больше, а скорость его движения меньше, чем на самом деле. Туман закрывает ориентиры. При длительной поездке в тумане устают глаза, снижается острота зрения [9].
Рассмотрим ситуации, когда на транспортном средстве включен дальний свет фар (рис. 1), ближний свет фар (рис. 2) и противотуманные фары (рис. 3).
Дальний свет фар создает белую стену. При включении дальнего света фар поток света отражается от тумана почти перпендикулярно глазам водителя и создает перед машиной белую немного рыхлую непрозрачную стену. Причем располагается эта стена на небольшом расстоянии от автомобиля [8].
Ближний свет фар также создает слепящую стену. Но в данном случае эта стена становится чуть более рыхлой и отодвигается немного дальше от машины. Происходит это потому, что теперь поток света падает на стену тумана не перпендикулярно, а под углом к ней. Соответственно и отражается он не прямо в глаза водителю, а тоже под углом и немного выше глаз. Но слепящая стена все равно остается [8].
Свет противотуманных фар освещает поверхность дороги только на не большом расстоянии перед автомобилем, но и не создает слепящую стену. Противотуманная фара дает плоский и широкий луч, который стелется непосредственно над дорогой, чтобы не освещать толщу тумана по высоте [8].
Существуют так называемые густые туманы (fog) и тонкие туманы (mist). В соответствии с международным стандартом термином fog обозначают туман, горизонтальная видимость в котором не превышает 1 км. При видимости же более 1 км туман называется mist [10].
Пелена тумана может быть настолько густой, что даже с включенными фарами нельзя ничего различить на расстоянии 3-5 м [9]. Существуют разные способы борьбы с туманом, одним из таких способов является установка противотуманных фар на транспортное средство (рис. 4).
Характер взаимодействия света с туманом напрямую зависит от размера частиц тумана и длинны волны используемого света. Если частицы весьма малы по сравнению с длинной волны, больше всего света рассеивается под углом 0̊ и 180̊ к лучу, падающему на частицу. Если частицы сравнительно велики (но все же меньше длины световой волны), максимальное количество света рассеивается в направлении падающего луча (вперед). Кроме того, рассеянный свет обычно поляризован [2].
Достаточно большая часть света отражается от мельчайших капель воды, которые действуют как световозвращающие элементы сферического катафота [4], и возвращается обратно, в сторону источника света, тем самым ослепляя водителя (рис. 5). Это является одной из причин расположения противотуманных фар на возможно большем расстоянии от точки наблюдения за освещаемым объектом [3].
Основным преимуществом противотуманных фар является излучаемый ими плоский и широкий луч, который стелется непосредственно над дорогой, чтобы не освещать толщу тумана по высоте [5]. Кроме того, туман обладает еще одной интересной особенностью, которую используют для увеличения эффективности противотуманных фар, он ложится не вплотную к земле, а так, что между нижней кромкой тумана и поверхностью дороги остается небольшая воздушная прослойка в несколько десятков сантиметров [9]. Противотуманные фары устанавливаются достаточно близко к дороге для того, чтобы свет от них попадал в воздушную прослойку и как можно меньше взаимодействовал с туманом [7].
Кроме особенностей установки противотуманных фар, существуют особенности, касающиеся источников света, используемых в них. В первых противотуманных фарах источниками света являлись лампы накаливания, затем широкое применение получили галогенные лампы накаливания, причем зачастую противотуманные фары использовались с желтыми светофильтрами [8]. На данный момент, когда выбор источников света достаточно велик, в противотуманных фарах кроме галогенных ламп накаливания широко используют ксеноновые и светодиодные лампы. Спектры излучения всех перечисленных ламп значительно отличаются друг от друга, а следовательно, и свет, излучаемый ими, будет по-разному преломляться и рассеиваться туманом.
Решить вопрос, связанный со спектральными характеристиками света, рассеиваемого капельками тумана, начавший волновать ученых еще в прошлом столетии, пытались Стараттон и Хоутон: «Непосредственным толчком к осуществлению их большого теоретического исследования явился неожиданный экспериментальный результат Хоутона обнаружившего максимум прозрачности искусственных туманов для голубых лучей. В результатах его эксприментов наблюдается максимум у 0,49 μ вместо монотонного возрастания прозрачности в сторону больших длин волн. Но ряд других исследователей, также изучавших до Хоутона прозрачность искусственных и естественных туманов для видимого света, не обнаруживал подобного максимума. Гранат и Гульбурт для естественного тумана нашли вполне определенное монотонное возрастание прозрачности в сторону больших длин волн. Андерсон получил то же самое для искусственного тумана. Не имея оснований подвергать сомнению правильность тех или иных результатов, Страттон и Хоутон искали причину расхождений в различии условий опытов, и единственно существенно менявшимся во всех этих измерениях фактором они могли считать размер капелек тумана» [11]. Результаты экспериментов Страттона, Хоутона и других исследователей работающих в этой области подчеркивают сложность поднятого в статье вопроса.
С развитием, в настоящее время, мощных светодиодов, излучающих свет с различными длинами волн, появилась возможность не только выбирать источники света из уже существующих, но и разрабатывать новые. Нами были измерены светотехнические характеристики шести образцов светодиодов мощностью 1 Вт и 3 Вт, спектры которых представлены на рисунке 6.
По отдельности исследуемые светодиоды излучают свет с длинами волн, соответствующими фиолетовому, синему, зеленому, желтому, оранжевому и красному цветам (рис. 6), и не могут использоваться в противотуманных фарах. Аддитивное смешение даже нескольких из перечисленных цветов позволяет получить белый свет, что хорошо видно на диаграмме цветности (рис. 7), который можно применять для освещения, причем изменяя интенсивности излучения отдельных длин волн можно изменять цветовую температуру.
Таким образом, на данный момент имеется достаточно большой выбор источников света, существует возможность создания новых типов источников света имеющих особые характеристики, но вопрос, какой именно источник света и с каким спектром излучения лучше всего использовать в противотуманных фарах остается открытым и требует отдельного изучения.
Заключение
Проведенный в статье обзор подчеркивает сложность процесса взаимодействия света с туманом и подтверждает наличие повышенной сложности управления транспортным средством в условиях тумана, связанной с ухудшением общей видимости, искажением визуального восприятия расстояния, скорости и т.п.
Количество транспорта и скорость движения постоянно растут, а существующие методы улучшения видимости в условиях тумана, такие как установка противотуманных фар на транспортное средство, повышают безопасность движения лишь в некоторых пределах, что требует принятия дополнительных мер по созданию новых методов или модернизации существующих.
Одним из вариантов решения поставленной задачи является разработка источника света для противотуманной фары, спектр излучения которого должен быть подобран таким образом, чтобы обеспечивалась наибольшая видимость и наименьший слепящий эффект, что требует дополнительного изучения оптических свойств тумана.
Рецензенты:
Федоренко А.С., д.т.н., профессор, заведующий кафедрой источников света ФГБОУ ВПО «Мордовский государственный университет им. Н.П. Огарева», г. Саранск;
Кокинов А.М., д.т.н., профессор, профессор кафедры светотехники ФГБОУ ВПО «Мордовский государственный университет им. Н.П. Огарева», г. Саранск.