Инфракрасная спектроскопия (ИКС) - раздел молекулярной оптической спектроскопии, изучающей спектры поглощения и отражения электромагнитного излучения в ИК-области. Метод ИК-спектроскопии позволяет осуществлять раннюю диагностику кариеса у пациентов. Этот метод может быть использован в стоматологической практике для исследования состояния ротовой жидкости с целью выявления кариеса, как на начальных, так и на поздних стадиях развития, объективизации диагноза, планирования объема стоматологического вмешательства и последующей оценки эффективности лечения. Нормальное функционирование эмали поддерживается за счет динамического равновесия деминерализации и реминерализации. При возникновении условий для нарушения этого равновесия происходит превалирование процесса деминерализации [1, 4, 10]. Согласно современным представлениям о причинах возникновения и развития кариозного процесса, именно деминерализация эмали лежит в его основе [5, 6, 7, 8]. Однако, наряду с процессами вымывания минеральных веществ из очага поражения, происходит и их поступление из ротовой жидкости. Установлено также, что выход минеральных веществ и их поступление в эмаль способствуют поддержанию постоянства состава эмали [8].
При изучении кариозного процесса в аспекте механизма его возникновения, первостепенное значение имеет информация о строении эмали зуба, поскольку в большей степени эмаль определяет устойчивость зуба к кариесу [9]. Строение дентина и цемента во многом сходно, так как эти ткани имеют одно онтогенетическое происхождение. Статистически достоверных различий между процессами, происходящими при кариесе в дентине и цементе зуба, не выявлено [12]. Это позволяет нам рассматривать процессы, происходящие в дентине и цементе зуба при кариесе в одной группе.
Зрелая эмаль зубов состоит из минеральной (95%), органической (1,2%) составляющих и воды (3,8%). Минеральную основу эмали составляют кристаллы апатитов. Кроме гидроксиапатита (75%), в эмали содержатся карбонапатит (19%), хлорапатит (4,4%), фторапатит (0.66%). В составе химических неорганических соединений кальций составляет 37%, а фосфор - 17% [3]. Состав апатитов минерализованных тканей как в норме, так и при патологии может колебаться в весьма значительных пределах. Оптимальный состав гидроксиапатита соответствует формуле Ca10(PO4)6(OH)2 с молярным отношением Ca/P равным 1,67 [5, 6]. В природе встречаются гидроксиапатиты с этим соотношением от 1,33 до 2,0. Это является следствием наличия вакантных мест в кристалле гидроксиапатита и способностью к замещению атомов и ионов внутри кристалла при потере или поступлении ионов извне. Именно эта особенность определяет вариабельность строения кристалла гидроксиапатита. Дентин, по своему объему и массе, составляет основу зуба. Основу неорганического вещества составляет гидроксиапатит (60-66%), фторапатит (1%), карбонат магния (3-4%), карбонат кальция (3%) и в небольшом количестве фторид кальция [2]. Изучая химический состав зубов методом спектрографического анализа, многие авторы обнаружили в зубах человека ряд микроэлементов: Ni, Ti, Со, Sr, Pb, Al, Zn, Cu, Mn, Mg и другие [2, 5, 6, 7, 8]. Химический состав зубных тканей зависит от состояния обменных процессов в организме и тесно связан с теми биохимическими реакциями, которые в нем происходят [7].
При кариесе в стадии белого пятна общее содержание белковых компонентов органического матрикса эмали увеличивается почти в два раза. Повышение содержания белка происходит за счет увеличения фракции растворимого белка и высокомолекулярных пептидов [6]. В пигментированном пятне общее содержание белка остаётся на том же уровне, но уменьшается количество водорастворимого белка, фракция свободных аминокислот увеличивается в восемь раз по сравнению с интактной эмалью и в 2,5 раза выше, чем в белом кариозном пятне. Неорганический фосфор снижен в белом кариозном пятне на 73%; содержание углеводов в органическом веществе по сравнению с интактной эмалью возрастает в 12 раз, содержание липидов снижается [6]. В поверхности эмали белого кариозного пятна содержится в 2-3 раза больше фтора, чем в других участках кариозной эмали. В кариозной эмали определяется меньшее количество азота, чем в белке интактной эмали, большее число аминокислот и в большем количестве. По данным [8, 9] содержание кальция в эмали при кариесе снижается в 4 раза и достигает 10,52%, при норме - 42,21 %, фосфора в 2 раза с 20% до 10%.
При кариесе изменения дентина начинаются с нарушения структурной целостности вследствие деминерализации его минеральной составляющей, дезинтеграции и последующего разрушения органической матрицы. Значительно увеличивается доля органической составляющей (на 40%), и уменьшается доля минерального компонента (до 53%) [5, 6]. В свою очередь, в зубах, пораженных кариесом, на видимо неизмененных участках эмали и дентина значительных изменений химического состава не происходит [5, 6, 7, 8]. Пусковым механизмом формирования кариозной полости является деминерализация эмали, выражающаяся в изменениях структуры кристалла гидроксиапатита. Апатиты эмали характеризуются наличием включений - карбонатных групп и ряда химических элементов в следовых количествах (натрия, магния, калия, хлорида, цинка, фторида); кроме того, в решетке кристалла нередко сохраняются вакантные места. Вакансии и включения и существенно изменяют плотность кристалла биологического апатита и влияют на его растворимость. Выход ионов из апатита в окружающую среду начинается при снижении до критического уровня в ней количества свободных ионов, составляющих апатиты. Растворяясь, апатит распадается на отдельные ионы; при постепенном снижении рН раньше других растворяются апатиты, содержащие карбонаты, магний, натрий и цитраты, позже - апатиты с фторидами. Катионный состав тканей подвергается постоянным изменениям в ходе жизнедеятельности зуба, в связи со способностью кристаллов гидроксиапатита к изоморфным и гетероморфным изменениям. Кроме того, нельзя исключать и возрастные изменения, происходящие в зубе, накопление одних веществ и потеря других [3].
Анализ имеющихся данных обнажает необходимость поиска других веществ, определяющих строение тканей зуба в норме и при патологии. Согласно знаниям об особенностях химического строения кристалла гидроксиапатита, именно анионы играют значительную роль в поддержании строения и функции всего кристалла. Так как именно они определяют форму, заряд, полярность кристалла, что опосредованно свидетельствует о кариесрезистентности кристалла. Таким образом, для диагностики ранних форм кариеса основное значение несет изменение отношений концентраций анионов между собой и определение их качественного и количественного соотношения. ИКС позволяет с меньшей затратой усилий и времени достичь достоверных результатов, что несомненно будет способствовать улучшению степени диагностики, возможности диагностировать ранние изменения в предклиническом периоде с тем, чтобы минимизировать последствия для организма. Известно, что наблюдение за содержанием анионов более информативно, так как может быть зафиксировано на современных приборах - спектрофотометрах, а катионы в рамановском и инфракрасном спектрах не отображаются и не поглощаются, следовательно, изменение их концентраций не может помешать наблюдениям за анионами.
На спектрах фиксируются колебания структурных молекулярных и ионных единиц неорганической составляющей - карбонат-гидроксиапатита, таких как фосфат-, карбонат- и гидрофосфат-ионы, а также многочисленные колебания, связанные с протеиновой матрицей. ИКС позволяет также зафиксировать качественные и количественные изменения концентраций белковой составляющей тканей. В настоящее время спектрофотометрические методы (инфракрасная спектрометрия, рамановская спектроскопия) являются основными в изучении структуры и дефектообразования органоминеральных соединений, к которым относятся ткани зуба. Кроме того, простота подготовки проб и сниженные требования к образцу тканей делают метод ИКС перспективным в данной области. Нами было принято решение исследовать ткани зуба на предмет изменения соотношения минеральной и органической составляющей в норме и при патологии. Это позволило выбрать три основных параметра для оценки изменения тканей зуба: отношение полос поглощения карбонатов к фосфатам, карбонатов к органической матрице, фосфатов к органической матрице. Относительное изменение этих параметров будет свидетельствовать об изменениях, происходящих в тканях зуба.
Цель исследования: изучить применение инфракрасной спекроскопии для ранней диагностики кариеса.
Материалы и методы исследования. Материалом исследования послужили 40 удаленных человеческих зубов. Материал был получен после экстракции зубов по ортодонтическим и ортопедическим показаниям. Материал был разделен на группы: контрольная группа - интактные зубы (20 зубов), группа исследования - зубы, пораженные кариесом дентина (20 зубов). После экстракции зубы обрабатывались в проточной воде, очищались от налета, высушивались фильтровальной бумагой. После этого приготавливался порошок из тканей зуба посредством послойного распила турбинным наконечником с водяным охлаждением. Материал собирался в чашки Петри, высушивался естественным образом. Из каждого зуба изготавливалось два образца твердых тканей: эмаль и дентин. После этого в ступке приготавливалась мелкодисперсная смесь из порошка и вазелинового масла до необходимой концентрации. Исследование проводили с помощью метода ИК-спектроскопии биологических тканей и жидкостей (2). Также исследованию подвергалась ротовая жидкость. Были сформированы две группы: группа контроля - группа пациентов с интактными зубными рядами (20 человек), группа сравнения - пациенты с различными формами кариеса зубов (20 человек) (диагноз был установлен клинически). Забор материала проводили путем сбора нестимулированной слюны в пробирку в количестве 2-3 мл утром натощак. Для исследования ротовую жидкость высушивали в течение двух дней при комнатной температуре. Образец готовили в виде суспензии в вазелиновом масле. Регистрацию спектров поглощения производили на спектрофотометре «Carl Zeiss Jena SPECORD IR-75»(Германия), в диапазоне волновых чисел 1700-400 см-1. В качестве расчётных ИК-спектроскопических величин найдены 3 параметра (П1 (1070/1017), П2 (1070/1665), П3 (1017/1665)), являющиеся частными от деления высот пиков аналитических полос поглощения фосфатов, карбонатов и белков исследуемых материалов друг на друга [3, 8]. Полученные данные были обработаны на IBM PC/AT с помощью пакетов прикладных программ Statistica 6.0 (Windows XP) и Microsoft Excel с использованием методов одномерной статистики.
Результаты исследования В ходе исследования рассчитаны параметры ИК-спектров ротовой жидкости пациентов группы контроля и группы сравнения. Результаты представлены в таблице 1.
Таблица 1
Изменение параметров ИК-спектров ротовой жидкости при кариозном процессе
Параметры |
П1 (1070/1017) |
П2 (1070/1665) |
П3 (1017/1665) |
Группа контроля |
1,22 ± 0,12 |
0,57 ± 0,09 |
0,52 ± 0,02 |
Группа сравнения |
1,64 ± 0,14* |
0,78 ± 0,11* |
0,60 ± 0,03* |
* - различия достоверны по сравнению с группой контроля (р ≤ 0,05).
Как видно из табл.1. при кариесе достоверно увеличиваются значения параметров П1, П2, П3 ИК-спектров ротовой жидкости на 34,4%, 36,8% и 15,4% (р ≤ 0,05) соответственно. В работах [13, 14] показано, что полосы поглощения 1070 см-1 соответствует колебаниям карбонат-иона, 1017 см-1- колебаниям незамещенного фосфат-иона, 1665 см-1- колебаниям белка (органической составляющей тканей зуба). Нами было отмечено увеличение значений параметров П1 ИК-спектров слюны пациентов группы сравнения, т.е. частное от деления высоты пика поглощения 1070 см-1 на высоту пика поглощения 1017 см-1 увеличивается, а значит, в ротовой жидкости пациентов группы сравнения уменьшается содержание фосфатов и увеличивается содержание карбонатов. Отмечено увеличение значений параметров П2 и П3 ИК-спектров слюны пациентов группы сравнения, т.е. отмечается снижение белковой составляющей ротовой жидкости по сравнению с фосфатами и карбонатами, где в качестве спектроскопических параметров используются иные характеристические частоты поглощения белковой составляющей - 960, 860 см-1, но, несмотря на это, выявлена аналогичная динамика изменения соотношения минеральная фаза - органическая матрица. Полученные данные свидетельствуют о том, что возникновение кариеса в зубе приводит к изменению соотношения фосфатов, карбонатов и белков. Также были исследованы параметры ИК-спектров тканей зуба (дентина и эмали) пациентов группы контроля и группы сравнения. Результаты представлены в таблице 2 и 3.
Таблица 2
Изменение параметров ИК-спектров дентина зуба при кариесе
Параметры |
П1 (1070/1017) |
П2 (1070/1665) |
П3 (1017/1665) |
Группа контроля (дентин) |
0,83 ± 0,02
|
2,85 ± 0,25
|
3,38 ± 0,12
|
Группа сравнения (дентин) |
0,88 ±0,02*
|
4,11 ± 0,34*
|
4,46 ± 0,14*
|
* - различия достоверны по сравнению с группой контроля (р ≤ 0,05).
Из табл.2. видно, что при заболевании кариесом достоверно увеличиваются значения параметров П1, П2, П3 ИК-спектров дентина зуба (р ≤ 0,05) на 6,02%, 44,2% и 32%. Таким образом, в дентине у пациентов группы сравнения уменьшается содержание фосфатов и увеличивается содержание карбонатов. Отмечено уменьшение структурной упорядоченности, кристалличности гидроксиапатита, уменьшение концентрации ионов кальция и фосфора, а также выявлены обратные взаимосвязи между содержанием фосфат-ионов и карбонат-ионов. Установлено снижение белковой составляющей дентина по сравнению с фосфатами и карбонатами. Найдена положительная корреляция (r=1) между изменением параметров ИК-спектров ротовой жидкости и дентина зуба. В табл.3. показано изменение параметров ИК-спектров эмали зуба.
Таблица 3
Изменение параметров ИК-спектров эмали зуба при кариозном процессе
Параметры |
П1 (1070/1017) |
П2 (1070/1665) |
П3 (1017/1665) |
Группа контроля (эмаль) |
0,74 ± 0,03
|
9,66 ± 0,21
|
4,70 ± 0,16
|
Группа сравнения (эмаль) |
0,80 ± 0,02*
|
7,33 ± 0,17*
|
3,92 ± 0,11*
|
* - различия достоверны по сравнению с группой контроля (р ≤ 0,05).
При заболевании кариесом достоверно увеличивается значение параметра П1, на 8,02% (р ≤ 0,05), а параметры П2, П3 ИК-спектров дентина зуба снижаются (р ≤ 0,05) на 31,8% и 20% (соответственно). В эмали зуба пациентов группы сравнения уменьшается содержание фосфатов и увеличивается содержание карбонатов, и увеличивается содержание белковой составляющей по сравнению с минеральной частью. Таким образом, найдена положительная корреляция (r=1) между изменением параметра П1 ИК-спектров ротовой жидкости и эмали зуба, и отрицательная корреляция (r= -1) между изменением параметров П2 и П3 ИК-спектров ротовой жидкости и эмали зуба.
Рецензенты:
Косюга С.Ю., д.м.н., профессор, зав. кафедрой стоматологии детского возраста ГБОУ ВПО «Нижегородская государственная медицинская академия Минздрава России», г. Нижний Новгород;
Гажва С.И., д.м.н., профессор, зав. кафедрой стоматологии ФПКВ ГБОУ ВПО «Нижегородская государственная медицинская академия Минздрава России», г. Нижний Новгород.