Среднелегированные мартенситно-бейнитные стали обладают высоким комплексом эксплуатационных свойств и используются для производства ответственных конструкций [3,9]. Они обеспечивают высокую прочность конструкции при одновременном снижении металлоемкости. Однако при сварке стали данного класса склонны к образованию закалочных структур и холодных трещин. Получение надежных сварных соединений осложняется также повышенной чувствительностью к концентраторам напряжений при статических и, особенно, при динамических нагрузках. Такая опасность тем больше, чем выше легирование стали углеродом [9].
Одним способов получения качественного сварного соединения является сварка с использованием механизмов импульсной подачей электродной проволоки (ИПЭП) [7,11].
Рационально использовать механизмы тянущего типа, т.к. это определяет не только портативность системы, но и что более важно точнее передает форму импульса. Это объясняется тем, что перемещение проволоки через направляющий канал полуавтомата чувствительно к форме и размеру изгиба шланга [2,4,8]. Перемещение проволоки в импульсном режиме через сопротивление шланга в любом случае сопровождается демпфированием переднего и заднего фронтов импульса, но если учесть, что положение шланга может меняться в ходе каких-либо манипуляций сварщика, то будет меняться и форма импульса, и соответственно условия воздействия на процесс сварки.
Вследствие этого сварка с импульсной подачей электродной проволоки (ИПЭП) с использование механизмов тянущего типа является актуальной задачей, данный процесс как обеспечивает преимущества импульсно-дуговых способов сварки, так и не имеет существенных недостатков.
Также не маловажным фактором, влияющим на качество сварного соединения, является защитная газовая среда. Проанализировав существующие и применяемые защитные газы и смеси на их основе, рационально использовать смесь Ar+CO2 [1]. Данная смесь активно применяется на производстве, положительно сказывается на технологических свойствах сварочной дуги (повышая стабильность ее горения), происходит снижение размеров брызг и уменьшение потерь на разбрызгивание, уменьшается выпуклость шва, с резким переходом к основному металлу (рис. 1) [10].
а)
б)
Рис. 1. Внешний вид швов полученных способом сварки с ИПЭП в СО2 (а) и способом сварки с ИПЭП в смеси газов Ar+CO2 (б)
На основе проведенных ранее экспериментов было установлено, что применение смеси Ar(70%±3%)+СО2(30%±3%) при сварке сталей обыкновенного качества (Ст3пс) снижают величину потерь электродного металла на угар и разбрызгивание до 2% [5]. Однако вопросы применяемости данного процесса при сварке среднелегированные мартенситно-бейнитных сталей мало изучены.
В результате была поставлена цель: изучить влияние состава защитной газовой среды на структуру и эксплуатационные свойства сварных соединений из среднелегированной мартенситно-бейнитный стали.
Методы исследования
Для исследования влияния состава защитной газовой среды на структуру и эксплуатационные свойства сварных соединений из стали среднелегированной мартенситно-бейнитный стали провели экспериментальные исследования двух способов защиты сварных соединений:
1) сварка в СО2(100%);
2) сварка смеси газов Ar(70%±3%)+СО2(30%±3%).
В обоих случаях в состав экспериментальной установки входили: автоматическая сварочная головка ГСП-2, укомплектованная механизмом импульсной подачи электродной проволоки [6], источник питания ВС-300Б, смесительное оборудование, состоящее из трех ротаметров и смесительной камеры. Сварку производили пластин из стали 30ХГСА толщиной 10мм, в Х-образную разделку сварочной проволокой Св-08ГСМТ-О (диаметром 1,2 мм)
Режимы сварки образцов представлены в табл.1.
Таблица 1
Режимы сварки образцов
№ образца |
Материал |
Защитный газ |
I, A |
Uд, B |
Vсв, мм/с |
f, Гц |
«1» |
30ХГСА |
100%СО2 |
200-210 |
23-24 |
3.6 |
64 |
«2» |
30ХГСА |
70%Ar+30%СО2 |
220-230 |
24-25 |
3.7 |
64 |
Различие в значениях энергетических параметров связано с тем, что для достижения одинаковых значений глубины проплавления необходимо увеличить режимы сварки с ИПЭП в смеси газов Ar+СО2 на 5-10% по сравнению с ИПЭП в СО2, так как добавление аргона приводит к ее уменьшению [7].
Оценка химического состава сварного шва проводилась с использованием последовательного рентгенофлуоресцентного спектрометра LabCenter XRF-1800.
Пробы для исследования производились в двух точках в основном металле и металле шва (рис.2). Диаметр точек равен 3мм.
Рис.2. Точки замеров для исследования химического состава
Механические свойства сварных соединений определялись в соответствии с общепринятыми методиками, представленными в ГОСТ 6996-66 «Сварные соединения. Методы определения механических свойств».
Предел прочности определялся на разрывной машине «ALFRED J. AMSLER», соответствующей ГОСТ 7855-84.
Исследование микроструктуру наплавленного металла сварных соединений наблюдалась на микроскопе ЕС МЕТАМ РВ (ГОСТ15150-69) в комплекте с цифровым фотоаппаратом Fuji Film Fine Pix S6500fd, обеспечивающим документирование данных с микроскопа.
Результаты исследования и их обсуждение
В ходе проведенных исследований полученные сварные образцы, которые подвергли количественной оценки химического состава, механическим испытаниям и структурному анализу сварного соединения (табл. 2, 3 и рис. 3).
Таблица 2
Химический состав наплавленного металла
№ образца |
Химические элементы |
||||
С, % |
Si, % |
Mn, % |
S, % |
P, % |
|
«1» |
0,24-0,26 |
0,74-0,76 |
0,63-0,65 |
0,013 |
0,017 |
«2» |
0,25-0,27 |
0,78-0,8 |
0,66-0,68 |
0,013 |
0,017 |
Таблица 3
Результаты механических испытаний сварных образцов
Способ защиты сварных соединений |
Ударная вязкость, KCU, Дж/см2 |
||
Т=0ºС |
Т=20ºС |
Т=-20ºС |
|
Сварка с ИПЭП в СО2 |
62…66 |
72…76 |
52..56 |
Сварка с ИПЭП в смеси Ar+СО2 |
77…81 |
85…89 |
60…64 |
Как видно из табл. 3, механические свойства сварных соединений, полученных при сварке в смеси газов Ar+CO2 повышаются на 10-15% по сравнению с защитой в СО2.
Это связано с тем, что при сварке в процесс раскисления в меньшей степени участвуют кремний и марганец, которые оставаясь в металле шва, повышают ударную вязкость.
Проведенные металлографические исследования (рис.3) двух способов позволяют говорить, что закономерности изменения структуры аналогичны.
В центре металла шва видны темно-коричневые пластинки бейнита в более светлой матрице мартенсита (рис.3 а,б). А на границе зоны термического влияния (рис.3 в,г) феррит-бейнит (слева) и исходная ферритно-перлитная структура (справа внизу).
Стоит отметить, что сварные соединения не подвергались термообработке. Устранение подогрева и послесварочной термообработки из технологического процесса сварки стали 30ХГСА и уменьшение времени на зачистку изделия, позволит увеличить производительность труда по сравнению с первым способом на 5-10%.
а) в)
б) г)
Рис.3. Микроструктура (×1000): а) участок в центе металла шва при сварке с ИПЭП в СО2; б) участок в центе металла шва при сварке с ИПЭП в смеси Ar+СО2; в) участок границы зоны термического цикла при сварке с ИПЭП в СО2; г) участок границы зоны термического цикла при сварке с ИПЭП в смеси Ar+СО2
Вывод
Установлено, что применение защитной газовой среды Ar(70%±3%)+СО2(30%±3%) в сравнении с СО2(100%), позволяет увеличить величину ударной вязкости сварного соединения на 10-15%, за счет меньшего выгорания элементов раскислителей (6%-кремний и 8%-марганец).
Работа выполнена в рамках гранта РФФИ 14_08_31036
Рецензенты:
Данилов В.И., д.т.н., профессор, Юргинский технологический институт (филиал) федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский Томский политехнический университет», г.Юрга;
Бурков П.В., д.т.н., профессор, Юргинский технологический институт (филиал) федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский Томский политехнический университет», г.Юрга.