Расширение экспорта образовательных услуг - одно из основных условий, способствующих глобализации технологических изменений в образовательных процессах общества и позволяющих позиционировать отечественные университеты не только как узнаваемые, но и признаваемые за рубежом [5]. Современные же информационные и коммуникационные технологии, однозначно поддерживающие глобализацию и интернационализацию образовательных услуг и сервисов экспортной деятельности вузов, в то же время, предопределяют их жесточайшую конкуренцию на мировом рынке интеллектуальных образовательных продуктов. Обучение иностранных студентов инженерно-техническим специальностям является важным направлением работы Томского политехнического университета (ТПУ). Вследствие географического расположения для ТПУ наибольший приток иностранных студентов предоставляют страны Азии. В свою очередь, среди студентов Азиатско-Тихоокеанского региона, обучающихся в Томском политехническом университете, традиционно большую долю составляют студенты из Китая, Вьетнама, Монголии. В рамках предвузовской подготовки иностранные студенты, не уверенно владеющие русским языком, не только адаптируются к российской системе образования и поликультурной среде университета, но и изучают вводные курсы по математике, физике и другим предметам инженерно-технического профиля.
Личный опыт практической работы авторов подтверждает - для иностранных студентов наиболее сложным является этап предвузовской подготовки, когда необходимо адаптироваться к совершенно новой среде проживания, освоить неродной язык и привести знания и умения по общеобразовательным дисциплинам к необходимому уровню. А студенты Китая испытывают ещё характерные только для них трудности, обусловленные тем, что русская языковая система и китайская языковая системы различаются на фонетическом, лексическом, грамматическом уровнях и в области графики [4, 6]. Кроме того из-за существенного различия менталитетов обучающиеся на подготовительном отделении могут испытывать и «культурный шок» [1].
В соответствии с вышесказанным, актуальной задачей является разработка специализированных средств обучения, учитывающих динамичность и сложность обучения именно по дисциплинам предвузовской подготовки и ориентированных на китайских студентов. В частности, авторами разработан учебно-методический комплекс по предвузовскому курсу обучения математике, состоящий из учебного пособия «Математика» [3], рабочей тетради, словаря математических терминов и интерактивного аудио-приложения.
Учебное пособие содержит основные темы элементарной математики и некоторые важные разделы высшей математики. Его цель - изложить материал в доступной языковой форме, помочь иностранным студентам овладеть математической терминологией на русском языке, научиться читать и понимать математические тексты на русском языке. Учебное пособие состоит из 25 тем, которые сопровождаются заданиями трех типов: на приобретение навыков владения вводимой математической терминологии, на отработку навыков чтения математических формул и выражений и на закрепление приемов решения задач.
Важное значение имеет также такая предлагаемая форма работы, которую сами иностранные слушатели назвали «маленький зачет». Она состоит в следующем. При изучении каждой темы предлагается список из 10-12 вопросов по этой теме. Вопросы простые, ответ на каждый из них исчерпывается двумя-тремя предложениями. Первое домашнее задание - написать ответы на эти вопросы. Второе домашнее задание - выучить ответы на эти вопросы. На занятии испытуемый случайным образом выбирает один из вопросов и отвечает на него устно, без использования каких-либо материалов. Остальные слушатели после ответа высказывают свои замечания и исправляют допущенные ошибки, если они имеются.
Лексические упражнения рабочей тетради являются письменными. Они не повторяют, но дополняют задания рабочей тетради. Выполняя упражнения рабочей тетради, иностранные студенты изучают особенности лексических конструкций математических текстов на русском языке, повторяют изученные математические термины, учатся правильно использовать их при изложении решений задач.
Приобретенные при выполнении упражнений учебного пособия и рабочей тетради навыки чтения, письма и говорения на русском языке способствуют формированию лингвистической компетенции в профессиональной сфере. Но обучение математическому знаковому языку (инвариантной части языка личности) преследует и другую цель - формирование коммуникативной компетенции, обеспечивающей дальнейшую возможность обучаться в российских вузах по основным образовательным программам, общаться в учебно-профессиональной и социально-культурной сферах.
Формирование коммуникативной компетенции невозможно без аудирования. Аудирование обозначает рецептивную деятельность, то есть представляет собой одновременное восприятие и понимание звучащей речи. Другими словами, аудирование является основой речевой деятельности и выступает в качестве цели и средства в практическом курсе изучения любого языка.
Многими исследователями [2] уже выявлено, что по сравнению с другими видами речевой деятельности (чтением, письмом), у представителей Китая при обучении восприятию, осмыслению и пониманию звучащей речи (аудированию) на русском языке, существует много проблем. Кроме того, эти проблемы оказывают негативное воздействие и на овладение другими видами речевой деятельности. И здесь дело не только в необходимости серьёзного умственного напряжения и большой концентрации внимания. Проблемы восприятия, осмысления и понимания звучащей речи китайских студентов объясняются следующими факторами:
1. В учебной традиции Китая развитию чтения и письма придают важное значение, а аудирование и говорение рассматриваются как побочные результаты обучения чтению и письму.
2. Отсутствие профессиональной языковой среды и речевого общения на русском языке, так как достижение уровня удовлетворительного речевого владения русским языком в отличие от чтения требует продолжительного времени.
3. Отсутствуют специализированные средства по аудированию, которые могли бы помочь иностранным студентам овладеть необходимыми навыками речевой деятельности на языке дисциплины - математике.
Для обеспечения возможности быстрее и качественнее осваивать русскую речь, авторами разработано интерактивное аудио-приложение для самостоятельной работы студентов при изучении математики. Приложение содержит, на данный момент, упражнения по первым пяти темам учебного пособия авторов «Математика»: 1) Натуральные числа. Арифметические операции; 2) Порядок действий. Сравнение чисел; 3) Делимость чисел; 4) Дроби; 5) Десятичные дроби.
Упражнения каждой темы располагаются в порядке увеличения сложности и делятся на две группы.
Выполнение упражнений первой группы поможет иностранным слушателям научиться правильно произносить изучаемые в этой теме математические термины, словосочетания и предложения с ними. Например, при изучении первой темы предлагается задание: «Слушайте и повторяйте названия чисел» или «Слушайте и повторяйте названия математических знаков». Само задание проговаривается как на русском, так и на китайском языках. При этом присутствует визуальная поддержка, то есть обучающийся видит на экране число или знак, название которого надо произнести.
Каждая тема содержит упражнения на отработку правильного произношения вводимых математических терминов, слов и словосочетаний с ними. Каждый новый математический термин (словосочетание, предложение с ним) произносится на русском языке дважды, с паузами, в которых иностранный слушатель повторяет сказанное.
Приложение предназначено для самостоятельной работы иностранных учащихся, поэтому каждый из них имеет возможность повторить любое упражнение столько раз, сколько нужно именно ему для овладения правильным произношением вводимых математических терминов, словосочетаний и предложений с их использованием.
Есть упражнения, в которых математические термины произносятся трижды: первый раз на китайском языке, потом дважды на русском языке с паузами. Такие упражнения позволяют китайским студентам сконцентрировать свое внимание на достижении правильного произношения слов (словосочетаний, предложений), поскольку смысл произносимого им понятен.
Выполнение упражнений второй группы поможет иностранным студентам научиться правильно воспринимать на слух математические термины, словосочетания и предложения с ними, произносимые на русском языке. К упражнениям второй группы относятся упражнения с заданиями: «запишите числа (дроби) цифрами», «запишите предложения математическими терминами», «ответьте на вопросы».
Например, тема «Дроби» содержит следующие упражнения.
Задание. Запишите дроби.
а) Одна пятая; одна третья; две шестых; тридцать одна четвертая; девятнадцать седьмых; пятьдесят две девятых; одна вторая; восемьдесят одна десятая; сорок две восьмых; сорок одна третья; шестьдесят восемь третьих; пятьдесят две тринадцатых; двадцать одна тридцатая; восемнадцать сто десятых; двадцать триста девятых;
б) три целых и одна пятая; две целых и одна вторая; сорок одна целая и тридцать две седьмых; сорок две целых и тридцать одна девятая; девятнадцать целых и две третьих; восемьдесят две целых и десять двенадцатых; двадцать одна целая и двенадцать двадцатых; тридцать две целых и тринадцать тридцатых.
Задание. Запишите предложения символами.
а) девять целых три восьмых меньше чем девять целых четыре восьмых;
б) девять целых три седьмых больше чем девять целых две седьмых;
в) десять целых и одна седьмая - не натуральное число;
г) десять двенадцатых равно пять шестых;
д) девять двенадцатых равно три четвёртых;
е) двадцать две третьих равно семь целых и одна третья;
ж) восемьдесят две целых и тридцать две семьдесят седьмых больше чем восемьдесят одна целая и тридцать две семьдесят седьмых.
При создании упражнений авторы старались использовать слова, которые обычно плохо воспринимаются на слух китайскими студентами. Многие преподаватели замечали, например, что числа 9, 10, 7, 8, 12, 20, 18, 19 часто воспринимаются ими на слух неверно.
Каждая тема содержит несколько заданий вида «ответьте на вопросы». Эти задания расположены в порядке увеличения их сложности. Среди них есть упражнения, включающие как вводимые математические термины, так и уже знакомые термины предыдущих тем. Например, первое из приведённых ниже заданий содержит новые понятия темы «Делимость чисел», а второе, кроме новых терминов, включает в себя и уже введенные ранее математические понятия (простое число, составное число, положительное число, отрицательное число, натуральное число, четное число, нечетное число).
Задание. Запишите ответы на вопросы.
а) Число 258 делится на 2?
б) Число 258 делится на 3?
в) Число 825 делится на 5?
г) Число 133 делится на 3?
д) Число 313 делится на 2?
е) Число 538 делится на 5?
ж) Число 530 делится на 5?
з) Число 530 делится на 10?
и) Число 535 делится на 10?
к) Чему равен наибольший общий делитель чисел 10; 15; 30?
л) Чему равно наименьшее общее кратное чисел 10; 15; 30?
Задание. Запишите ответы на вопросы.
а) Число 13 - натуральное число?
б) Число 13 - положительное число?
в) Число 13 - отрицательное число?
г) Число 13 - простое число?
д) Число 13 - составное число?
е) Число 13 - чётное число?
ж) Число 13 - нечётное число?
з) Число 7 - простое число?
и) Число 8 - простое число?
к) Число 4 - составное число?
л) Число 11 - это составное число?
м) Насколько 18 больше, чем 6?
н) Во сколько раз 6 меньше, чем 18?
о) Произведение 2 × 5 × 7 × 11 = 770 - это разложение числа 770 на простые множители?
п) Произведение 2 × 5 × 7 × 12 = 840 - это разложение числа 840 на простые множители?
р) Произведение 3 × 4 × 7 × 17 = 1428 - это разложение числа 1428 на простые множители?
Таким образом, новые слова постоянно повторяются, что способствует их прочному запоминанию.
Среди заданий вида «ответьте на вопросы» есть и такие, для выполнения которых нужно не только знать математические термины по изучаемой и пройденным темам, но и выполнять простые математические действия. Например, при выполнении следующего упражнения придется выполнить простые арифметические операции.
Задание. Запишите ответы на вопросы.
45,067
а) Чему равна целая часть этой дроби?
б) Чему равна дробная часть этой дроби?
в) Сколько знаков после запятой имеет эта дробь?
г) Чему равен знаменатель этой дроби?
д) Это конечная десятичная дробь?
е) Чему равно произведение этой дроби на 10?
ж) Чему равно частное этой дроби и 100?
з) Чему равна сумма этой дроби и дроби 1,11?
и) Чему равна разность этой дроби и дроби 5,05?
к) Эта дробь меньше, чем дробь 45,06?
л) Эта дробь больше, чем дробь 45,1?
К каждому упражнению второй группы имеется ключ, поэтому иностранный студент может самостоятельно проверить правильность выполненного им задания.
В заключение отметим, во-первых, формирование математической компетентности иностранных студентов требует личностно-ориентированного подхода к обучению, увязывающему воедино как профессиональные модули, так и модули поликультурной адаптации (культурообразующие модули), учитывающие этнически-национальный аспект обучаемых и реально, именно в социально-психологическом плане, обеспечивающие возможность успешного получения высшего профессионального образования на неродном языке в российском вузе.
Во-вторых, разработанный учебно-методический комплекс, включающий не только учебный материал и базу упражнений, но и аудиовизуальные информационно-экранные средства, позволяет реализовать на практике индивидуальный подход к обучению иностранных студентов аудированию - одному из главных видов речевой деятельности. Возможность самостоятельного использования аудио-приложения делает процесс обучения более комфортным, позволяет оптимизировать время овладения студентами необходимыми речевыми навыками в учебно-профессиональной сфере.
В-третьих, разработанный учебно-методический комплекс включен в международную образовательную программу Томского политехнического университета при подготовке иностранных студентов к обучению в технических вузах Российской Федерации (предвузовская подготовка).
В-четвертых, практическое использование учебно-методического комплекса экономит не только временные затраты и усилия студентов при обучении математике, но и временные затраты и усилия преподавателей при оценке уровня освоения материала.
Рецензенты:
Рожкова С.В., д.ф.-м.н., профессор кафедры организации и технологии высшего профессионального образования ФГБОУ ВПО «Национальный исследовательский Томский политехнический университет», г. Томск.
Тартаковский В.А., д.ф.-м.н., зав. лабораторией Института мониторинга климатических и экологических систем СО РАН, г. Томск.