Магнитное поле торцевого щита электрической машины обусловлено токами в проводниках лобовых и пазовых частей обмоток статора и ротора, а также полем воздушного зазора и конфигурацией ферромагнитных элементов в ней. Его точное моделирование в произвольном режиме работы машины достаточно сложно [1].
На рис. 1а приведена схема распределения магнитных потоков в ферромагнитных элементах торцевой зоны синхронного генератора (СГ), которая учитывает особенности конструкции СГ, где 1 - торцевой щит; 2 – стенка вентиляционного канала; 3 и 4 - сечение обмоток статора и ротора. Из схемы видно, что в одна из стенок прямоугольного ферромагнитного канала расчетной зоны заменяется двумя.
Рис. 1. Расчетная схема
Первая является стенкой вентиляционного канала. Именно ее обычно используют при расчете магнитного поля статора, ротора и воздушного зазора в торцевой зоне. Ее края не доходят в верхней точке до корпуса на (точка
), а в нижней до вала на
(точка
). Поэтому считается, что через нее замыкается магнитный поток
, обусловленный магнитными потоками
через ее внутреннюю поверхность [2-5]. На этой стенке измерительные преобразователи обычно не размещают [6; 7], а поток
не рассчитывают.
Вторая поверхность образована торцевым щитом. Ее при расчете магнитного поля торцевой зоны СГ от статора, ротора и воздушного зазора не учитывают, так как ее экранирует стенка вентиляционного канала. Она примыкает к корпусу практически без зазора, а к валу СГ с зазором .
Считается, что именно через нее замыкается магнитный поток , образованный магнитными потоками через три остальные стенки призматического канала. Моделирование
осуществляют следующим образом.
В соответствии с граничными условиями [1-5] тангенциальная составляющая поля от обмоток статора и ротора и
на любой из пограничных плоскостей равна нулю. Поэтому магнитные потоки через стенку определяют только по
и
- их нормальной составляющей. В соответствии с рис. 1а на стенках
и
это
и
, а на стенке
-
и
.
На рис. 2а приведены кривые (▬) и (—) распределения нормальной составляющей магнитной индукции и
, по пограничным поверхностям торцевой зоны СГ ТВВ-500-2ЕУ3, рассчитанные для режима номинальной нагрузки.
Так как и
известно, то распределение магнитных потоков от нее вдоль пограничных поверхностей моделируется по расчетной схеме на рис. 2б при следующих допущениях:
а) падением магнитного напряжения в ферромагнитных элементах, а также воздушными зазорами и
пренебрегается;
б) величина магнитного потока -го элемента через
-й элемент
считается прямо пропорциональной
- магнитному потоку
-го элемента и обратно пропорциональной
воздушному промежутку между
-м и
-м элементами;
в) составляющие магнитного потока по контуру вдоль пограничных поверхностей и против часовой стрелки равны по величине. Положительным направлением при суммировании магнитных потоков в этом случае считается направление по часовой стрелке.
Моделирование магнитных потоков вдоль поверхности ферромагнитных элементов торцевой зоны осуществляется в следующем порядке. Первоначально в соответствии с рис. 1 ферромагнитные поверхности вдоль обхода контура разбиваются на элементарные площадки с размерами и
, где
размер площадки вдоль оси
. Затем определяются их координаты
и воздушный промежуток
по торцевой зоне между ними
.
Затем находится расчетное расстояние между -м и всеми
-ми элементами
,
и определяется часть магнитного потока через
-й элемент
.
Рис. 2. Распределение магнитной индукции от обмоток статора и ротора ТВВ-500-2ЕУ3 по поверхности ферромагнитных стенок торцевой зоны (а) и магнитных потоков по ферромагнитным стенкам (б).
Магнитный поток вдоль -й элементарной площадки определяется как сумма потоков
в ее границах. На рис. 2б кривыми (▬) и (—) показано рассчитанное распределение магнитных потоков от обмоток статора и ротора вдоль граничных поверхностей СГ ТВВ-500-2ЕУ3, где
- магнитный поток в торцевом щите проходит по отрезку
на кривой.
Поле в торцевом щите токов в проводниках, расположенных в пазах статора и ротора, моделируется по известному распределению магнитной индукции в воздушном зазоре СГ. При этом считается, что падение магнитного напряжения в ферромагнитных элементах конструкции торцевой зоны равно нулю. Тогда для магнитной цепи “a”÷“d” на рис. 1а магнитное напряжение по основной гармонической
.
В области уплотнения
и
, (1)
а магнитный поток
. (2)
Магнитный поток в торцевом щите от в основном зависит от
. Определение их величин затруднено тем, что значительная часть
в области уплотнения замыкается через воздух, в том числе и через наружную сторону торцевого щита. Поэтому для упрощения расчетов, как показали эксперименты, следует принимать
=(0,05...0,2)
.
Экспериментальная проверка (1, 2) проводилась на СГ ТВВ-500-2ЕУ3 в режиме нагрузки. Магнитный поток вблизи уплотнения измерялся катушкой индуктивности без сердечника, а в щите катушкой с П-образным сердечником. Погрешность метода моделирования не превысила 20%.
Работа выполнена в рамках исполнения Госзадания «Наука» ГК № 7.2826.2011
Рецензенты:
Лукутин Б.В., д.т.н., профессор кафедры ЭПП ЭНИН ФГБОУ ВПО «Национальный исследовательский Томский политехнический университет», г. Томск.
Исаев Ю.Н., д.ф.-м.н., профессор кафедры ЭСиЭ ЭНИН, ФГБОУ ВПО «Национальный исследовательский Томский политехнический университет», г. Томск.