Для сравнительных экспериментов были использованы наноструктурированные покрытия на основе углерода (AlSiCr)C:H; (AlSiTi)C:H; СrN/CNx, полученные НПФ «Элан-Практик» (г. Дзержинск), нанесенные на диск (Ø 20 х 5 мм) из стали 40 Х. Экспериментальные исследования проводились на оборудовании CSM (Швейцария) методами индентирования, скратч-тестирования и трибоиспытания. Ниже приводятся основные результаты.
Испытания по индентированию проводились на наноиндентометре «CSM Микро скратч-тестер» с применением алмазного индентора Виккерса. Испытания проходили по следующей методике: 1) закрепление испытуемого образца на приборе; 2) задание основных настроек режима индентирования; 3) проведение индентирования; 4) получение фотографий следа индентирования; 5) анализ результатов. Эксперименты проводились при различных уровнях нагрузки для каждого образца от 50 до 100 мН. Приложение нагрузки осуществлялось до определенного уровня (50 мН), далее выполнялась выдержка в течение ограниченного периода времени при этом уровне нагрузки и разгрузка (рис.1). Для каждого образца выполнялась серия испытаний с целью определения следующих параметров: инденторная твердость (Hit), твердость по Виккерсу (HV), приведенный модуль упругости (E*), инденторный модуль упругости (Eit). Программное обеспечение позволило в автоматическом режиме обрабатывать результаты и строить по методике Оливера - Фарра диаграммы «нагрузка - глубина проникновения». Количественная оценка исследуемых покрытий проводилась на основе этих кривых (рис. 1) и отпечатков индентирования. На рис. 2 представлен пример отпечатка размером 3 х3 мкм, в табл.1 приведены средние значения физико-механических характеристик для исследуемых образцов.
|
|
|
а) (AlSiCr)C:H |
б) (AlSiTi)C:H |
в) СrN/CNx |
Рис. 1. Кривые индентирования при максимальной нагрузке 50мН |
Рис. 2. Отпечаток следа индентирования (х50)
Таблица 1. Результаты измерений по индентированию
Покрытие |
Физико-механические характеристики |
|||
Hit, ГПа |
Eit, ГПа |
E*, ГПа |
HV |
|
(AlSiCr)C:H |
23.94 |
221.62 |
243.5 |
2263.3 |
(AlSiTi)C:H |
19.12 |
145.70 |
160.4 |
1802.8 |
СrN/CNx |
22.27 |
283.04 |
311.0 |
2102.4 |
Испытания по методу скратч-тестирования проводились на наноиндентометре «CSM Микро скратч-тестер» с применением алмазного индентора Роквелла и линейного царапания. По результатам делается вывод о критической нагрузке, при которой покрытие начинает откалываться от подложки. Испытания проходили по следующей методике: 1) закрепление испытуемого образца на приборе; 2) предварительное сканирование поверхности и определение ее профиля; 3) задание параметров скратч-тестирования в настройках; 4) проведение скратч-теста; 5) построение панорамного снимка следа царапины; 6) анализ результатов. Программное позволило в автоматическом режиме обрабатывать полученные диаграммы «нагрузка - глубина проникновения - сигнал акустической эмиссии». Параметры скратч-тестирования были одинаковыми для всех образцов: начальная нагрузка 0,1 Н, конечная нагрузка - 15 Н; скорость нагрузки - 8.94 Н/мин; сканирующая нагрузка - 0,03 Н; скорость сканирующей нагрузки - 2 мм/мин; длина измерения - 5 мм; радиус индентора - 100 мкм. На рис. 3 представлены результаты скратч-тестирования. Числовые значения скратч-тестов показаны в табл. 2.
|
|
|
следы царапания |
||
|
|
|
Графики нагрузки при скратч-тестировании |
||
а) (AlSiCr)C:H |
б) (AlSiTi)C:H |
в) СrN/CNx |
Рис. 3. Результаты скратч-тестирования |
Таблица 2. Результаты скратч-тестирования и трибометрирования
№ опыта |
Нагрузка, при которой образуется первый скол, Н |
Значение коэффициента трения |
(AlSiCr)C:H |
5,83 |
0.02 |
(AlSiTi)C:H |
6,64 |
0.06 |
СrN/CNx |
3,85 |
0.46 |
Испытания по трибологии проводились по следующей методике: 1) закрепление испытуемого образца на подвижном столике; 2) наладка подвижной штанги и закрепление на ней вращающегося шарика-индентора; 3) установка параметров испытания (материал, скорость движения образца, усилие прижатия шарика, температура окружающей среды, время испытания и т.д.); 4) проведение испытаний; 5) получение графиков нагрузки, глубины истирания и коэффициента трения; 6) исследование дорожки износа и анализ полученных результатов. Испытания всех трех покрытий проходили при следующих одинаковых параметрах: диаметр дорожки - 11 мм, нагрузка на образец - 10 Н, скорость образца - 20 смсек, пройденный путь - 300 м, материал контртела - сталь ШХ 15, геометрия контртела - шар диаметром 6 мм. Графики изменения коэффициента трения для исследуемых покрытий представлены на рис. 4, средние значения коэффициента трения - в табл.2.
|
|
|
а) (AlSiCr)C:H |
б) (AlSiTi)C:H |
в) СrN/CNx |
Рис.4. Графики изменения коэффициента трения, полученные в результате трибологических испытаний |
Анализ экспериментальных результатов показывает, что твердость исследуемых покрытий не высока, составляет от 1802 до 2263 единиц по шкале HV, и уступает известным покрытиям, даже не содержащим углерод (например, традиционные покрытия TiN - 2900, TiAlN - 3200). Модуль упругости у исследуемых покрытий составляет невысокие значения: (AlSiCr)C:H - 243.5 ГПа, (AlSiTi)C:H - 160.4 ГПа, СrN/CNx - 311.0 ГПа (для сравнения: TiN - 361 ГПа, TiAlN - 650 ГПа). Для исследуемых углеродосодержащих покрытий выявлена хорошая адгезия. Наилучшая адгезия наблюдается у исследуемых покрытий на основе С: Н. Так у покрытия (AlSiCr)C:H нагрузка, при которой образуется первый скол выше, чем у покрытия СrN/CNx в 1,51 раза, а для покрытия (AlSiTi)C:H - в 1,72 раза. Проведенные трибологические испытания обнаружили низкие значения коэффициента трения для покрытий на основе С: Н. Так для покрытия (AlSiCr)C:H коэффициент трения - 0,02, а для (AlSiTi)C:H - 0,06 (для сравнения TiN, TiAlN на порядок больше). Именно низкие значения коэффициентов трения позволяют предложить использовать покрытия (AlSiCr)C:H (AlSiTi)C:H в трущихся парах трения и исполнительных механизмах.
Рецензенты:
- Гоц А.Н., д.т.н., профессор, профессор кафедры тепловых двигателей и энергетических установок ФГБОУ ВПО «Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых», г. Владимир.
- Кульчицкий А.Р., д.т.н., профессор, заместитель главного конструктора по испытаниям ООО «ВМТЗ». г. Владимир.
Библиографическая ссылка
Кононов Д.М., Жданов А.В., Королев А.Н. ИЗУЧЕНИЕ СВОЙСТВ НАНОСТРУКТУРИРОВАННЫХ PVD-ПОКРЫТИЙ НА ОСНОВЕ УГЛЕРОДА // Современные проблемы науки и образования. – 2011. – № 6. ;URL: https://science-education.ru/ru/article/view?id=5252 (дата обращения: 09.11.2024).