Фиброз миокарда является морфологическим субстратом большинства тяжелых болезней сердца [1–5].
Цель исследования. Изучить и обобщить в виде нарративного обзора данные литературы о механизмах миокардиального фиброза.
Материал и методы исследования. Проведен анализ литературных источников в базах данных РИНЦ и PubMed.
Внеклеточный матрикс сердца
Внеклеточный матрикс (ВКМ) сердца состоит (полноценный обзор см. в [1–5]) преимущественно из коллагенов III (эластичного) и I (жесткого), а также IV (базальные мембраны), V VI, фибронектина, ламинина (базальные мембраны), эластина и эластин-ассоциированных белков (фибриллинов, фибулинов, EMILIN-1), мембранных протеогликанов (синдеканов, глипиканов), внеклеточных протеогликанов (аггрекана, перлекана, нидогена и др.), малых богатых лейцином протеогликанов (декорина, бигликана, аспорина, фибромодулина, подокана и пр.), гиалуроната, матрицеллюлярных белков (SPARC (secreted protein acidic and rich in cysteine), CILP1 (cartilage intermediate layer protein 1), COMP (cartilage oligomeric matrix protein), представителей семейства CCN, в том числе CCN2 или CTGF (connective tissue growth factor), R-спондинов, остеопонтина, периостина, тенасцина-C, фибулинов, тромбоспондинов), матрикриптинов (биологически активных фрагментов молекул ВКМ, экспонирующихся путем протеолиза, реже – свободнорадикального окисления, денатурации, мультимеризации, механического воздействия, примеры – аррестен, канстатин, эндостатин, анастеллин, эндорепеллин) и др. [1–4]. ВКМ выполняет много функций, кроме структурной, «накапливает» биологически активные вещества (факторы роста, TGF-β), взаимодействует с «собственными» (интегринами, мембранными протеогликанами, CD44, CD168 (RHAMM), LYVE‐1, DDR, лайилином) и «чужими» рецепторами (факторов роста, цитокинов), посылая сигналы от ВКМ внутрь клетки и получая обратные [6]. В разрушении компонентов ВКМ участвуют секретируемые и мембранные Zn-зависимые ММП (23 вида), представители семейств ADAM (a disintegrin and metalloproteinase, 13 видов) и ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs, 19 видов), сериновые (химаза, триптаза тучных клеток, катепсин G, гранзимы, плазминоген), цистеиновые протеазы (каспаза-1, лизосомальные катепсины), гиалуронидаза, гепараназа и др. Функцию ММП, однако, нельзя назвать однозначно антифибротической, ферменты способствуют миграции, в том числе фибробластов, воспалительной инфильтрации (в свою очередь – источника ММП), синтезу факторов роста и TGF-β из латентных предшественников, осуществляют шеддинг (отщепление внеклеточной части рецептора), например эндоглина, при этом растворимая форма рецептора/корецептора исполняет роль ловушки; взаимодействуют с рецепторами (CD44) и т.д. [1–4]. Также отмечаются многоплановые эффекты TIMP, которые не сводятся к антагонизму с ММП, ADAM и ADAMTS. TIMP взаимодействуют с CD63, VEGFR2, АТ-рецептором 2-го типа, влияют на интегрины, матрицеллюлярные белки и т.д. [1, 7].
Классификация и механизмы фиброза. Роль TGF-β, PDGF, FGF
В зависимости от этиопатогенеза и локализации можно классифицировать фиброз на:
1) реактивный – формирование соединительной ткани между рабочими клетками, объем которых не уменьшается на начальных этапах, развивается в ответ на гемодинамическую нагрузку, некритическую для кардиомиоцитов ишемию, гипергликемию, при гипертрофической кардиомиопатии, саркоидозе, ХБП или как часть дегенеративных изменений при старении;
2) заместительный – развивается после гибели кардиомиоцитов (при инфаркте миокарда, саркоидозе, миокардите, токсическом/лекарственном поражении, ХБП);
3) инфильтративный – развивается при амилоидозе, болезни Фабри и прочих инфильтративных заболеваниях [8, 9].
Основными продуцентами избыточной соединительной ткани в сердце (как и в других органах – в печени при циррозе, в почках при ХБП и т.д.) являются миофибробласты. Эти клетки сочетают свойства фибробластов (например, экспрессия и секреция коллагенов I, III, периостина, фибронектина, тенасцина-C) и низкодифференцированных гладких миоцитов (гладкомышечного α актина (ген acta2 или sma), трансгелина (tagln или sm22)). Они имеют повышенную чувствительность к профиброгенным и провоспалительным медиаторам. Кроме того, миофибробласты синтезируют данные медиаторы (ИЛ-1β, -6, -10, ФНОα и др.) и механически воздействуют на межклеточное вещество, например посредством фибронексусов, соединяющих цитоскелет с фибронектином, и развитых фокальных контактов (винкулина, паксиллина, интергинов αvβ3 и иных, см. ниже) [7, 10]. Фибробласты и, возможно, другие клетки (эпителиоциты (в рамках эпителиально-мезенхимального перехода), перициты и клетки Ито печени, представители фагоцитирующих мононуклеаров, костномозговые прогениторные клетки и фиброциты) «превращаются» в миофибробласты, проходя через стадию промиофибробласта, при повреждении органа [1–4].
Ключевым молекулярным регулятором «программы фиброза», которая включает пролиферацию фибробластов, трансдифференцировку в миофибробласты, гиперпродукцию компонентов межклеточного матрикса, нарушение его деградации, изменение функции лейкоцитов, эпителиоцитов, перицитов, кардиомиоцитов и других клеток, является TGF-β. Его выделяют фибробласты, макрофаги, тромбоциты, кардиомиоциты, сосудистые клетки. Не менее важна стимулируемая ММП2, ММП9, плазмином, активными формами кислорода, матрицеллюлярными белками активация латентной формы, связанной с ВКМ [1–4]. Под контролем TGF-β, воздействующего через канонический Smad2/3-опосредованный сигнальный путь, находится синтез многих компонентов ВКМ (коллагена, фибронектина, периостина), гладкомышечного α-актина, трансгелина, интегринов. Данный сигнальный путь, однако, тормозит пролиферацию фибробластов, а отсутствие Smad3 ведет к дисфункциональной дилатации камеры после моделирования инфаркта. Неканонические пути представлены, среди прочего, каскадами митоген-активируемых киназ: Smad–TAK1 (TGFβ-activated kinase 1, другое название MAP3K7), ERK, JNK, p38MAPK и др. Информация данными путями передается регуляторам транскрипции – SRF (serum response factor), MRTF (myocardin-related transcription factors), кальцинейрину и др. [4]. Активно обсуждается роль интерлейкина-11 как одного из посредников TGF-β. Гиперфункция цитокина приводит к фиброзу; напротив, отсутствие α-субъединицы соответствующего рецептор замедляет фиброз при перегрузке давлением [5]. Системы передачи сигнала от TGF-β взаимодействуют на разных уровнях с другими, например с каноническими и неканоническими Wnt-, Hedgehog-, Hippo-каскадами трансдукции [11, 12]. TGF-β усиливает продукцию белков Wnt, вместе с ними стабилизирует β-катенин (подавляя киназу гликогенсинтазы-3β, GSK-3β (glycogen synthase kinase-3β)). Пути трансдукции MAPK и Rho-ROCK являются общими для TGF-β и Wnt [12]. Белки Wnt обладают профиброгенным и провоспалительным действием, стимулируют выработку цитокинов, трансдифференцировку фибробластов, в поврежденном сердце растет концентрация Wnt-1/Wnt-5a. Возможно, эти эффекты связаны с усилением функции TGF-β, например стабилизацией молекулы Smad3, деградация которой также стимулируется GSK-3β [12, 13].
Однако гиперфункция TGF-β, по-видимому, не всегда является достаточным условием фиброза. Так, у мышей со сниженным количеством латентного, следовательно, увеличенной активацией TGF-β, без воздействия каких-либо иных повреждающих факторов развивается фиброз предсердий (приводящий к электрическому ремоделированию и фибрилляции), но не желудочков [14]. Поэтому исключительно важны другие факторы, модулирующие работу TGF-β: 1) механическая (гемодинамическая) нагрузка, которая распознается клеткой при помощи ряда механосенситивных молекул (например, интегринов); 2) влияния со стороны ВКМ, например протеогликанов, матрицеллюлярных белков, матрикриптинов, ферментов (тесно связано с предыдущим пунктом, поскольку ВКМ выступает в роли «передаточного механизма» гемодинамической нагрузки); 3) эффекты нейрогуморальных систем, катехоламинов, ангиотензина II, альдостерона, эндотелина-1, адипокинов, медиаторов воспаления, натрийуретических пептидов (НУП); 4) другие лиганды, рецепторы, корецепторы, имеющие отношение к семейству TGF; 5) факторы роста, особенно PDGF [4].
Представитель семейства TGF-β – костный морфогенетический белок 7 (BMP-7) – противодействует эффектам TGF-β. BMP2 и активин A, вероятно, обладают профиброгенным и провоспалительным свойствами. При повреждении сердца в плазме растет концентрация BMP-4, -6, -10, фактора роста и дифференцировки-15 [4, 15]. Растворимая форма эндоглина (TGF-корецептора), отсоединившегося от мембраны в ходе шеддинга, подавляет работу TGF-β1 и развитие перегрузочных сократительной дисфункции и фиброза [16].
Тромбоцитарные факторы роста обладают профиброгенным (сильным у PDGF-A, слабым, наблюдающимся не на всех моделях, PDGF-B), но при этом проангиогенным эффектом (позитивным в контексте ремоделирования) [4]. Фактор роста фибробластов 23 (FGF23) и FGF2 способствуют ремоделированию, вероятно, усиливая кальцинейриновый и MAPK пути передачи сигнала соответственно. Напротив, FGF16, конкурируя с FGF2 за рецептор FGFR1c, защищает сердце от дезадаптивной гипертрофии [17].
Роль гемодинамической нагрузки и нарушенной механотрансдукции в патогенезе фиброза
Важная механосенситивная структура клеток сердца – фокальный контакт – содержит мембранные интегрины (составлены из 2 субъединиц – α (18 разновидностей у млекопитающих) и β (8 видов, всего 24 комбинации), кардиомиоциты содержат преимущественно α1β1, α5β1, α7β1, фибробласты – α1β1, α2β1, α3β1, α4β1, α5β1, α6β1, αvβ1, αvβ3, αvβ5, эндотелиоциты – α1β1, α2β1, α5β1, αvβ3), с которыми снаружи клетки соединены молекулы ВКМ. Внутриклеточная часть β-интегрина связана посредством адаптерных белков (талина, винкулина, паксиллина, ILK) с цитоскелетом, сократительными и сигнальными протеинами (в первую очередь, с фокальной адгезионной киназой (FAK), а также с PYK2, Src, ROCK, ERK). Один из доменов FAK взаимодействует с рецепторами эфринов, EGF, PDGF. Активацию интегрин-FAK/PYK2 передачи сигнала вызывают ангиотензин II, эндотелин-1, агонисты адренорецепторов [18, 19]. В ответ на механическую нагрузку интегрины способны активировать латентный TGF-β протеаза-независимым и протеаза-зависимым (например, «предоставляя» его ММП14) способами. Данный механизм работает в поврежденном, но не здоровом сердце [1, 18]. Нокаут гена интегрина-β3 тормозит развитие вызванного перегрузкой фиброза, в частности нарушает передачу сигнала от рецепторов PDGF и Pyk2 [20]. Гиперфункция фибробластного интегрина-β при его взаимодействии с CD63 (рецептором TIMP1) способствует транслокации Smad2/3 и β-катенина в ядро и запуску «программы фиброза» [21]. Гиперэкспрессия интегрин-ассоциированного белка мелузина препятствует переходу адаптивной гипертрофии к дисфункциональному ремоделированию при длительной гемодинамической нагрузке [5]. Ингибирование FAK (фармакологически или путем генного нокдауна) тормозит постинфарктный и перегрузочный фиброз [22]. Интегрины, расположенные на макрофагах (αvβ3), взаимодействуют с тенасцином-C, что посредством FAK, Src и NK-κB стимулирует синтез ИЛ-6 (следовательно, воспаление и фиброз) [23]. Блокирование интегрина-αv на периваскулярных клетках препятствует активации латентного TGF-β и ангиотензин-индуцированному фиброзу у мышей [24]. Подавление экспрессии гена CD44 тормозит активацию фибробластов [24]. Экспрессия мембранных протеогликанов, например синдеканов, возрастает под действием ангиотензина II, медиаторов воспаления, патоген-ассоциированных молекулярных паттернов, что способствует активации кальцинейрин-NFAT сигнального пути и прочим профиброгенным изменениям [25]. «Выключение» бигликана тормозит вызванные длительной перегрузкой гипертрофию и фиброз [26]. Декорин, напротив, тормозит развитие фиброза [27]. Подобные эффекты малых богатых лейцином протеогликанов можно предположительно объяснить их влиянием на кальцинейриновый путь трансдукции (у бигликана посредством Abra, Rcan1), ангиогенез (VEGF), фибробласты (Tnfrsf12a), аутофагию, митофагию, воспаление. Молекулы ВКМ и их фрагменты (протеогликаны, матрицеллюлярные белки, гиалуронат), в частности, могут выступать в роли DAMP (danger‐/damage-associated molecular patterns), взаимодействовать с TLR (Toll-like receptors), стимулируя NF‐κB-зависимый синтез цитокинов и прооксидантных ферментов, и с пуринергическими рецепторами (P2X7), запуская сборку инфламмасомы [27]. Экспрессия бикликана усиливается ангиотензином II [26]. Белок CILP1 (cartilage intermediate layer protein 1) тормозит Smad-зависимую передачу сигнала и переход к миофибробластному фенотипу [28, 29]. Нокаут гена ADAM23 в сердце мышей ухудшает развитие гипертрофии и фиброза вследствие перегрузки давлением или воздействия ангиотензина II, гиперэкспрессия обладает противоположным эффектом, что, вероятно, связано с ингибированием данных ферментов пути трансдукции интегрин-αvβ3-FAK-протеинкиназа B [30]. «Выключение» ADAM12 усиливает индуцируемые перегрузкой гиперфункцию интергрина β1, рецепторов TGF-β, ПкB-mTOR, Erk и Smad2/3 [31]. На механическую нагрузку реагируют кальциевые каналы L-типа, TRPC (напротив, подавляемые НУП), система STIM1-SOCE (участвующие в депо-управляемом входе кальция), ангиотензиновый рецептор 1-го типа [5].
Роль нейрогуморальных систем, цитокинов, натрийуретических пептидов
Ренин-ангиотензин-альдостероновая система (РААС), катехоламины, цитокины, эндотелин-1 стимулируют фиброз разнообразными способами, как связанными с TGF-β, так и независимыми от него [4]. Проренин, взаимодействуя со своим рецептором, приобретает каталитическую активность, посредством ERK1/2 стимулирует продукцию TGF-β [32]. Ангиотензин II через рецептор 1-го типа усиливает воспаление, свободнорадикальное окисление, продукцию TGF-β (например, посредством KLF5), PDGF, ламинина, фибронектина, коллагенов, тенасцина-С, остеопонтина, бигликана, CCN2 [4, 5]. Альдостерон увеличивает синтез провоспалительных, прооксидантных молекул, TGF-β, CCN2, эндотелина-1, плацентарного фактора роста, галектина-3, остеопонтина, ИАП-1, а также реализует ряд негеномных МР-рецептор-независимых эффектов при помощи G-рецептора 30 и ERK1/2, PI3K, ПкС, JNK путей трансдукции [4]. «Контррегуляторная» ренин-ангиотензиновая система – ангиотензин 1-7, аламандин, рецептор ангиотензина II второго типа, рецептор MasR – обладает антифибротическим эффектом. Возможно, важнейшими плейотропными эффектами пирфенидона являются ингибирование АТ-рецептора 1-го типа и воздействие на MasR [33, 34]. Стимуляция β2-адренорецепторов, во многом посредством p38MAPK, усиливает функцию фибробластов, макрофагов, продукцию факторов роста кардиомиоцитами. Возможно, значимую роль в фиброгенезе играет сигнал, передаваемый от GRK2 [4]. Адренергическая стимуляция при помощи Hippo-сигнального пути повышает экспрессию галектина-3 [35]. Напротив, воздействие на β3-адренорецептор подавляет синтез CCN2 [4]. Интерлейкин 33 подавляет фиброз, воздействуя на ST2 рецептор, растворимая форма которого индуцирует противоположные негативные эффекты [5]. Антифибротическим, противовоспалительным, антигипертрофическим действием обладают НУП, которые, например, подавляют работу MAP-киназ (ERK, p38MAPK, JNK), усиливают активность их антагонистов-фосфатаз (MKP-1 (mitogen-activated protein kinase phosphatase-1)), тормозят перегрузку кальцием и свободнорадикальное окисление [36].
Заключение
Повреждение миокарда, воздействие нейрогуморальных и иммунных систем активируют систему TGF-β и ряд смежных механизмов. Это приводит к трансдифференцировке клеток в миофибробласты, которые продуцируют компоненты внеклеточного матрикса.
Библиографическая ссылка
Каде А.Х., Поляков П.П., Муратова А.Ю., Богданова Ю.А., Вчерашнюк С.П., Туровая А.Ю., Занина Е.С. МЕХАНИЗМЫ МИОКАРДИАЛЬНОГО ФИБРОЗА // Современные проблемы науки и образования. 2021. № 2. ;URL: https://science-education.ru/ru/article/view?id=30609 (дата обращения: 04.04.2025).
DOI: https://doi.org/10.17513/spno.30609