Сетевое издание
Современные проблемы науки и образования
ISSN 2070-7428
"Перечень" ВАК
ИФ РИНЦ = 1,006

ИСПОЛЬЗОВАНИЕ МОРСКИХ ВОДОРОСЛЕЙ В МЕДИЦИНЕ И ФАРМАЦИИ

Семенова Е.В. 1 Билименко А.С. 1 Чеботок В.В. 1
1 ФГБОУ ВО «Воронежский государственный медицинский университет им Н.Н. Бурденко» Министерства здравоохранения Российской Федерации
В данной статье рассматривался и анализировался информационный материал о применении низших растений – морских водорослей – в медицине и фармации, о возможности использования препаратов на основе водорослей. Актуальность проблемы обусловлена тем, что современная медицина заинтересована в поиске лекарственных препаратов на основе продуктов природного происхождения, а водоросли являются естественными растительными продуктами, схожи по составу и свойствам со многими биологически активными веществами человека. Делается вывод об эффективности влияния их отдельных компонентов, в частности сульфатированных полисахаридов, на живые организмы. Доказывается их привлекательность для профилактики и лечения опасных для жизни человека заболеваний, поскольку морские водоросли обладают антиэкотоксическим потенциалом, антикоагулянтной и противовоспалительной активностью и нейропротективными эффектами: они представляют собой сильные сорбенты радионуклидов, жирных кислот, холестерина, солей тяжелых металлов. Полисахариды из морских водорослей влияют на активность холинэстеразы, используются при нейродегенеративных заболеваниях, также водоросли оказывают иммуномодулирующее, антиоксидантное действие. Лекарственные препараты на основе водорослей имеют малое количество побочных действий, что обусловливает широкую возможность их применения. Кроме того, в некоторых районах земного шара морские водоросли являются локальным растительным сырьем, представляющим возобновляемые ресурсы.
морские водоросли
антиэкотоксический потенциал
антикоагулянт
иммуномодулятор
нейропротектор
1. Возжинская В.Б. Донные макрофиты Белого моря. М.: Наука, 1971. 201 с.
2. Камнев А.Н. Структура и функции бурых водорослей. М.: Изд-во МГУ, 1989. 53 с.
3. Артамонова Е.А., Пономарева Т.В., Меркушев Г.Н. Влияние Кламина на биохимические изменения, обусловленные радиационным воздействием в эксперименте // Изучение и применение лечебно-профилактических препаратов на основе природных биологически активных веществ / под ред. В.Г. Беспалова, В.Б. Некрасовой. СПб.: Эскулап, 2000. С. 210-214.
4. Рекша В.Э. Антиоксиданты и свободные радикалы // Декада экологии: материалы XI Международного конкурса (Омск, 11-19 мая 2017 г.). Омск: Издательство Омского государственного технического университета, 2017. С. 126-129.
5. Одинец А.Г., Орлов О.И., Ильин В.К., Ревина А.А., Антропова И.Г., Фенин А.А., Татаринова Л.В., Прокофьев А.С. Радиопротекторные и антиоксидантные свойства геля из бурых водорослей // Вестник восстановительной медицины. 2015. № 6 (70). С. 89-96.
6. Аминина Н.М., Подкорытова А.В., Корзун В.Н. Влияние альгиновой кислоты и ее солей на динамику накопления стронция и цезия в организме крыс // Радиационная биология и радиоэкология. 1994. С. 703-712.
7. Членов М.А., Кирьянов А.В. Альгисорб – новое высокоэффективное средство для выведения радионуклидов // Эффективность использования препаратов из морских водорослей в медицине: тезисы докладов конференции Архангельского водорослевого комбината. Архангельск, 1995. С. 29-30.
8. Захарова А.С., Рувинова Л.Г. Канцерогенные вещества на предприятиях Вологодской области // Научное сообщество студентов. Междисциплинарные исследования: электронный сборник статей по материалам IХ студенческой международной научно-практической конференции. 2016. № 6 (9) С. 355-359.
9. Пахомов Д.Е., Воронич С.С., Гребёнкин Н.Н., Роева Н.Н., Зайцев Д.А., Шадская Ю.С., Хлопаев А.Г. Изучение динамики выброса канцерогенных веществ в атмосферу и количественная её оценка на основе данных экологического мониторинга // Экологические системы и приборы. 2016. № 6. С. 3-8.
10. Енина О.В., Совершаева С.Л., Макарова С.Ф. Физиологические аспекты антиэкотоксических эффектов препаратов на основе морских водорослей // Экология человека. 2007. № 10. С. 3-9.
11. Зайчик А.Ш., Чурилов. Л.П. Основы патохимии. СПб.: ЭЛБИ, 2001. 688 с.
12. Хотимченко Ю.С. Противоопухолевые свойства некрахмальных полисахаридов: фукоиданы, хитозаны // Биология моря. 2010. Т. 36. № 5. С. 319-328.
13. Вищук О.С., Ермакова С. П., Фам Дюк Тин, Шевченко Н.М., Буи Минг Ли, Звягинцева Т.Н. Противоопухолевая активность фукоиданов бурых водорослей // Тихоокеанский медицинский журнал. 2009. № 3. С. 86-89.
14. Жанаева С.Я., Алексеенко Т.В., Короленко Т.А., Звягинцева Т.Н. Противоопухолевая и антиметастатическая активность сульфатированного полисахарида фукоидана бурой водоросли Охотского моря Fucus evanescens // Тихоокеанский медицинский журнал. 2009. № 3. С. 90-93.
15. Усов А.И., Билан М.И. Фукоиданы – сульфатированные полисахариды бурых водорослей // Успехи химии. 2009. Т. 78. № 8. С. 846-862.
16. Облучинская Е.Д. Методологические подходы к разработке биопрепаратов на основе фукусовых водорослей // Вестник Кольского научного центра РАН. 2015. № 2 (21). С. 78-81.
17. Андрианова Е.В., Егорова Е.Н. Оксидативный стресс в патогенезе заболеваний // Молодёжь и медицинская наука: материалы V Межвузовской научно-практической конференции молодых ученых (Тверь, 23 ноября 2017 г.). Тверь: Издательство ГБОУ ВПО Тверская государственная медицинская академия Министерства здравоохранения Российской Федерации, 2018. С. 30-34.
18. Имбс Т.И., Шевченко Н.М., Суховерхов С.В. Влияние сезона на состав и структурные характеристики полисахаридов бурых водорослей // Химия природных соединений. 2009. № 6. С. 661-665.
19. Zhang Z., Wang X., Liu X., Hou Y., Zhang Q. Extraction of polysaccharides from five algae and their potential antioxidant activity in vitro. Carbohydr. Polym. 2010. vol. 82. P. 118-121.
20. Camara R.B.G., Costa L.S., Fidelis G.P., Nobre L.T., Dantas Santos N., Cordiro S.L., Costa M.S., Alves L.G., Rocha H.A. Heterofucans from the brown seaweed Canistrocarpus cervicornis with anticoagulant and antioxidant activities. Mar. Drugs. 2011. vol. 9. no. 1. P. 124-138.
21. Цындяйкина А.С., Лалаев Э.Э.О., Шин Е.С., Шумилин М.Е. Нейродегенеративные заболевания: меняя взгляд на прошлое // Фундаментальные и прикладные научные исследования: актуальные вопросы, достижения и инновации: сборник статей XV Международной научно-практической конференции (Пенза, 15 сентября 2018 г.). Пенза: Издательство "Наука и Просвещение" (ИП Гуляев Г.Ю.), 2018. С. 230-232.
22. Беседнова Н.Н., Сомова Л.М., Гуляев С.А., Запорожец Т.С. Нейропротективные эффекты сульфатированных полисахаридов из морских водорослей // Вестник Российской академии медицинских наук. 2013. № 5. С. 52-59.
23. Ji A., Yao Y., Che O., Wang B., Sun L., Li X., Xu F. Isolation and characterization of sulfated polysaccharide from the Sargassum pallidum (Turn.) and its sedative/hypnotic activity. J. Medicinal Plants Res. 2011.vol.5 no. 21. P. 5240-5246.
24. Matta C.B.B., Souza E.T., Queiroz A.C. Antinociceptive and anti-inflammatory activity from algae of the genus Caulerpa. Mar. Drugs. 2011. vol. 9 no. 3. P. 307-318.
25. Coura C.O., Arauyo I.V.V., Vanderlei E.S., Quindere A.L., Fontes B.R., Querroz I.N.L., Menezes D.B., Bezerra M.M., Silva A.A.R., Chaves H.V., Jorge R.J.B., Evangelista J.S.A.M., Benevides N.M.B. Antinociceptive and anti-inflammatory activities of sulfated polysaccharides from the red seaweed Gracillaria cornea. Basic Clin. Pharmacol. Toxicol. 2012. vol.110 no. 4. P. 335-341.
26. Кароматов И.Дж., Ашурова Н.Г., Амонов К.У. Ламинария, морская капуста // Биология и интегративная медицина. 2017. № 2. С. 194-213.

Морские водоросли с древних времен привлекали внимание человека. Эти низшие растения, произрастающие на дне водоемов, применялись в рационе питания, как удобрения, как лекарство и как косметическое средство. Установлено, что активные элементы морских водорослей всасываются практически полностью, поскольку их состав близок к плазме человека.

Выявлено, что в составе морских водорослей находятся элементы, которые имеются в тканях и крови человека, а также в морской воде. Вследствие этого водоросли способны возмещать нехватку элементов и содействовать нормализации обмена веществ. В наземных растениях ниже содержание витаминов, чем в морских водорослях. Также антиоксидантная активность, которой обладают полиненасыщенные жирные кислоты бурых водорослей, превышает активность витамина Е в несколько раз. Важно отметить, что в морских водорослях содержатся моно- и дийодтирозин, применяемые для лечения патологий щитовидной железы. Токсичные продукты метаболизма, радионуклиды и соли тяжелых металлов могут быть удалены из организма человека при участии полисахаридов водорослей.

В наше время медицина и фармация заинтересованы в исследовании свойств многих водорослей. Пока лишь несколько десятков видов водорослей из нескольких десятков тысяч находят применение в медицине. В данной статье мы рассмотрели основные эффекты морских водорослей, которые в будущем могли бы быть использованы для создания лекарственных средств и лечения серьезных заболеваний.

Цель исследования: исследовать и определить варианты использования, актуальность применения морских водорослей и препаратов на их основе в медицине и фармации.

Материал и методы исследования

Объектом настоящего исследования являются представители низших растений – морские водоросли. Предметом исследования было влияние их биохимически активных компонентов на организм человека. Исследование проводилось с помощью поисково-информационных (eLibrary, Googlescolar, CyberLeninka, ResearchGate) и библиотечных баз данных методом анализа и интерпретации материала.

Результаты исследования и их обсуждение

Общеизвестно, что бурые водоросли встречаются в морях и океанах. Например, в Белом море обитают 6 видов ламинариевых водорослей и 5 видов фукоиданов (больше всего обнаруживаются два вида ламинарий – L. saccharina и L. Digitata, а из фукоидов: F.vesiculosus L. – фукус пузырчатый и F. serratus L. – фукус зубчатый), более того – они добываются промышленным способом [1, 2]. Лечебные свойства морских водорослей основаны на их биохимическом составе (таблица).

 

Биохимический состав морских водорослей

Вещество

Процентное содержание веществ в водорослях, %

Углеводы (каррагины, фукоиданы, соли альгиновой кислоты, агароза, агаропектин, галактаны, маннит, производные маннита – ламинорабиноза, маннитан, растительные волокна и др.)

70

Липиды (стеарины, полиненасыщенные жирные кислоты)

1–3

Белки

5–15

Минеральные вещества

20–50

 

Препараты на основе морских водорослей широко используются в лечебно-профилактической практике [3]. Наличие биологически активных компонентов определяет детоксикационное, антиканцерогенное и иммуномодулирующие действие. Такие свойства дают предполагать, что морские водоросли обладают экопротекторной активностью.

В результате метаболизации токсических веществ в организме человека может ускоряться процесс образования свободных радикалов, которые оказывают токсическое действие на мембраны клеток организма. Общеизвестно, что аскорбиновая кислота, токоферол, биофлавоноиды и селен, выступающие в качестве антиоксидантов, нейтрализуют свободные радикалы [4]. Клинически доказана эффективность водорослевых препаратов как радиопротекторов. Нейтрализуя образующиеся пероксидные соединения и стимулируя иммунную систему, возможно добиться защиты организма от радиационного поражения [5].

Растворимые и нерастворимые соли альгиновой кислоты, обладая сорбционными свойствами, способны связывать токсические вещества в желудочно-кишечном тракте и выводить их из организма, препятствуя дальнейшему перемещению в кровь. Антиэкотоксическая активность позволяет альгинатам взаимодействовать с катионами тяжелых металлов – процессы комплексообразования, ионообмена.

Известно, что препараты на основе альгиновой кислоты восстанавливают пораженные ткани кишечника, а также способны нормализовать микрофлору. Соли данной кислоты оказывают стабилизирующее действие; это значит, что они способны положительно воздействовать на структуры клеточных мембран, из-за способности к модификации влияют на систему кроветворения костного мозга.

Лекарственные препараты альгигель и канальгат успешно справляются с последствиями радиационного облучения. Данный факт подтверждает ряд испытаний, проведенных на больных раком, подвергающихся воздействию лучевой терапии, в ходе которых выявлена профилактическая и терапевтическая эффективность.

Сорбционная активность полисахаридов морских водорослей (например, альгината кальция) позволяет связывать и выводить из организма тяжелые металлы, радионуклиды, высокую активность имеет удаление изотопов стронция [6]. Похожими свойствами обладает препарат энтеросорбент «Альгисорб», поскольку он выводит токсические вещества из желудочно-кишечного тракта [7].

Альгиновая кислота морских водорослей характеризуется способностью к восстановлению иммунной системы и увеличению устойчивости организма человека к инфекциям. Основываясь на данном сведении, следует применять биологически активные добавки, в составе которых имеются соли альгиновой кислоты, в местах с высоким содержанием вредных и токсичных веществ. Альгинаты возможно использовать в тех регионах страны, где отмечается наибольшее скопление предприятий цветной и черной металлургии [8], в городах, где обнаружено высокое содержание свинца в окружающей среде, как препараты с сорбционными свойствами.

Согласно статистике в современном мире высок риск возникновения онкологических заболеваний. Особенно опасными канцерогенными веществами признаются полициклические углеводороды [9], нитрозосоединения, диоксины, а также микотоксины. Именно поэтому в медицине и фармации делается ставка на исследование антиракового действия морских водорослей, поэтому большое число публикаций посвящено данной теме.

Противоопухолевой природой обладают как цельные морские водоросли, их экстракты, так и различные очищенные биологически активные вещества из них, а именно каротиноиды, биофлавоноиды, хлорофилл, пищевые волокна, полиненасыщенные жирные кислоты [10, 11]. Интересно отметить, что противоопухолевая активность фукоиданов, полученных из различных морских водорослей, проявляется в разной степени. Данные отличия можно объяснить особенностями структурного строения. На выраженность противоонкологических свойств влияют молекулярная масса, типы гликозидных связей, моносахаридный состав [12].

О.С. Вищук и иные в одном из своих исследований анализировали несколько видов бурых водорослей для выяснения их противоопухолевой активности. В результате были получены данные, позволяющие утверждать, что выделенные фукоиданы из водорослей обладали различной степенью активности, а также что на уровень данной активности влияло строение главной цепи в молекуле [13].

Доказано, что диета, которая богата морскими водорослями, понижает риск развития онкологических заболеваний. Добавление в пищу животным порошка из ламинарии вело к снижению развития злокачественных образований (имело место выраженное онкопрофилактическое действие), поэтому перед медициной и фармацией стоят такие важные задачи, как разработка, экспериментальная проверка, введение в лечение противораковых лекарственных препаратов на основе морских водорослей.

Исследованием анализов у больных с хроническим атрофическим гастритом установлено, что БАД «Кламин» улучшает функциональное состояние слизистой оболочки желудка, помимо этого, данное средство эффективно при заболеваниях щитовидный железы – при эндемическом зобе, а также отличается гепатопротекторным действием. Его применение уместно при предраковых заболеваниях.

Другим важным действием морских водорослей на организм является их способность воздействовать на процесс роста злокачественных образований и на распространение метастазов. Во многих исследованиях изучались данные свойства, проводились эксперименты, вследствие которых устанавливались различные мнения насчет того, как именно проявляются активности, что способствует возникновению эффекта.

Экстракт фукоидана из бурой морской водоросли находит применение в медицине как антиметастатический препарат при лечении раковой опухоли [14].

Механизмы противораковых свойств морских водорослей связаны с иммуномодулирующими функциями. Сульфатированные полисахариды, фукоиданы, коррагинаны и пектины приводят в действие систему комплемента, стимулируют фагоцитоз, синтез иммуноглобулинов и механизм защиты клеток, а именно выработку тимусзависимых лимфоцитов и естественных киллеров [15]. Препараты, имеющие в своем составе такие полисахариды, как дополан и суполан, активизируют интенсивность фагоцитоза, содействуют дифференцировке Т-лимфоцитов, естественных киллеров, повышают содержание иммуноглобулина А.

В морских водорослях содержится большое количество сульфатированных полисахаридов. Они интересны медицине и фармации тем, что характеризуются антиапоптическими, антиоксидантными, антигипергликемическими, антикоагулянтными, антитоксическими, противовоспалительными действиями. Вследствие этого полисахариды оказывают положительное влияние на органы и ткани организма человека. Наиболее богатым источником фукоиданов среди бурых водорослей являются фукусовые водоросли [16].

Рассмотрим антиоксидантный эффект сульфатированных полисахаридов (СПС) морских водорослей. СПС представляют собой антиоксиданты из-за способности предотвращать окислительный стресс. Оксидативный стресс — это процесс образования свободных радикалов [17]. Окислительный стресс участвует в нейродегенеративных заболеваниях, является их признаком. Причина этого – дисбаланс прооксидантного и антиоксидантного гомеостаза. Сульфатированные полисахариды морских водорослей обладают функцией защиты клетки от повреждения свободными радикалами, способными перехватывать супероксидные радикалы [18, 19].

При исследовании фукоиданов выявлено, что глюкороновая кислота, фукозы, нейтральные сахара способствуют их антиоксидантной активности [20]. Прочность структуры фукоидана сохраняется благодаря комплексу с полифенолами. Именно антиоксидантные свойства сульфатированных полисахаридов дают возможность сокращать окислительный стресс в модельных системах нейродегенеративных заболеваний.

При нейродегенеративных заболеваниях отмечается гибель нейронов [21]. В ходе одного исследования выявлено, что фукоидан из Fucus vesiculosis (Фукус пузырчатый) может предотвращать гибель холинергических нейронов. Данное действие основано на способности полисахарида вызывать блокаду каспаз 3 и 9, отвечающих за терминальные фазы апоптоза. Значит, сульфатированные полисахариды могут оказывать нейрозащитное действие [22].

Далее мы обсудим воздействие сульфатированных полисахаридов на активность холинэстеразы. Во время дефицита нейротрансмиттера ацетилхолина в ткани мозга теряется холинергическая функция центральной нервной системы, из чего следует развитие когнитивных симптомов. Фермент ацетилхолинэстераза катализирует распад ацетилхолина. Морские водоросли – красные, бурые, зеленые – уместно принимать как нейропротекторное средство, поскольку данные организмы способны подавлять активность холинэстеразы.

Другим действием, которое индуцируют сульфатированные полисахариды на нервную систему, будет седативный эффект для организма. Обнаружены седативные свойства фукоидана из бурой водоросли Sargassum pallidum (Саргассум бледный) в отношении пациентов с болезнями нервной системы и бессонницей [23]. Сульфатированный полисахарид оказывал положительный эффект на процесс сна (засыпание, длительность). Важно то, что подобный результат равносилен действию диазепама.

Экстракты из водорослей рода Caulerpa [24], а также Gracilaria cornea проявили анальгетическую активность [25]. Нужно обратить внимание на то, что экстракты водорослей удобно применять для исследований из-за легкости выполнения и экономической выгоды.

Известно, что сульфатированные полисахариды из бурых морских водорослей обладают антикоагулянтной и противовоспалительной активностью. Сульфатированный галактофукан выделяется из коричневой морской водоросли Lobophora variegata. Этот фукоидан состоит из фукозы, галактозы и сульфата.

Сульфатированные полисахариды, содержащие фукозу (фуканы или фукоиданы), представляют собой полимеры, входящие в состав морских бурых водорослей. Среди наиболее широко изученных свойств этих соединений – ингибирование активации комплемента, противотромбозный, противоадгезивный, противовирусный и антимитогенный эффекты [26]. Некоторое структурное сходство между сульфатированными полисахаридами из морских бурых водорослей и гепарином было отмечено многими авторами. Это сходство связано с присутствием глюкуроновой кислоты, сульфатных групп и разнородностью полимеров.

В настоящее время биологическая активность фуканов актуальна в фармацевтической области для открытия новых безопасных препаратов, основанных на иммуномодулирующем, противоопухолевом и антикоагулянтном действии данного полимера. В воспалительном процессе молекулы селектины экспрессируются на эндотелиальной поверхности клеток, выстилающих кровеносные сосуды. В исследовательской работе о способности сульфатированных полисахаридов воздействовать на процесс воспаления ее авторы доказывают, что фукоиданы из F. vesiculosus и L. variegata уменьшают кожный воспалительный ответ после обработки раздражителем.

Миграция нейтрофилов в брюшину уменьшается при применении фукоидана. Помимо этого, ученые считают, что снижение инфильтрации нейтрофилов, вызванное сульфатированным галактофуканом, экстрагируемым из бурой водоросли L. Variegata, могло произойти из-за взаимодействия с селектинами.

Заключение

Таким образом, изложенный материал аргументирует эффективность использования препаратов на основе морских водорослей для предупреждения возникновения и терапии заболеваний. Препараты на основе водорослей можно рассматривать как перспективные в медицине и фармации по следующим причинам.

Биологически активные вещества человека имеют сходство с составом и свойствами водорослей, которые являются природными растительными продуктами. Поскольку альгиновая кислота и ее соли, а также фукоиданы проявляют сильный сорбирующий эффект в отношении радионуклидов и солей тяжелых металлов, то возможно их применение в медицине и фармации для терапии и профилактики радиационных поражений. Сульфатированные полисахариды из морских водорослей воздействуют на активность холинэстеразы, употребляются при нейродегенеративных заболеваниях, помимо этого, СПС оказывают седативное действие. Сульфатированный галактофукан проявляет антикоагулянтные и противовоспалительные свойства. Также морские водоросли характеризуются иммуномодулирующим, антиоксидантным, антиметастатическим действием, способны тормозить развитие злокачественных образований. Препараты на основе данных организмов представляют собой экологически безопасные средства, не вызывающие побочных реакций, не обладают противопоказаниями к применению, беременность не является причиной для отказа от использования, имеют доступную цену. Также морские водоросли выступают растительным сырьем, способным возобновлять ресурсы, что важно для современной экологии.

 


Библиографическая ссылка

Семенова Е.В., Билименко А.С., Чеботок В.В. ИСПОЛЬЗОВАНИЕ МОРСКИХ ВОДОРОСЛЕЙ В МЕДИЦИНЕ И ФАРМАЦИИ // Современные проблемы науки и образования. – 2019. – № 5. ;
URL: https://science-education.ru/ru/article/view?id=29072 (дата обращения: 03.11.2024).

Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»
(Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления)

«Фундаментальные исследования» список ВАК ИФ РИНЦ = 1,674