В районах Крайнего Севера и приравненных к ним местностях, полностью или частично занимающих 11 млн квадратных километров, проживает порядка 12 млн человек [1]. Экстремальные условия проживания населения в северных регионах усугубляются воздействием антропогенного загрязнения окружающей среды тяжелыми металлами, пестицидами и т.д. [2]. Серьезное воздействие на здоровье и качество жизни северянина оказывает и имеющийся дисбаланс химических элементов в почве и воде северных территорий.
Наши многолетние исследования в рамках комплексной программы «Механизмы адаптации и гомеостаза у человека в норме и при патологии в условиях северных территорий» показали, что проживание человека в климатогеографических условиях Севера приводит к ускоренному исчерпанию резервов организма человека и невозможности его адаптации к новым условиям [3-5], что приводит к развитию экологически обусловленных патологий и осложненным течениям социально значимых хронических заболеваний и, возможно, к преждевременной смерти, примерно на 10-15 лет раньше по сравнению со средней полосой России [6-8].
Вопросы здоровья населения северных территорий, особенность воздействия специфических северных природных факторов на человеческий организм актуальны в целях обеспечения профилактики заболеваний и формирования здорового образа жизни для коррекции переходных дезадаптационных и донозологических состояний организма [9-11].
Микроэлементы играют значительную роль в процессах адаптации, обеспечивая механизмы саморегуляции организма независимо от меняющихся параметров внешних условий [12; 13].
В настоящее время имеется большой блок исследований, во главу угла которых поставлена проблема изучения влияния микроэлементов на обмен веществ [14–16]. Биогеохимическая среда обитания тесно связана с жизнеобеспечением организма и адаптивными и дезадаптивными процессами, происходящими в организме человека. В результате на примере северных территорий можно говорить о возникновении специфической «северной патологии». В связи с тем что здесь преимущественно пришлое население, проживает на территории ХМАО-Югры менее 60-70 лет, популяционная адаптация не сформировалась к условиям региона [17; 18]. Для территории характерен недостаток кальция, магния, йода, селена и др. химических элементов, что влечет возникновение биогеохимических эндемий [19; 20].
Целью нашего исследования являлось изучение возможности использования листьев осины обыкновенной в качестве сырья для получения густых экстрактов, содержащих нутриентные элементы.
Использование растений, произрастающих в регионе Ханты-Мансийского автономного округа - Югры, для производства функционально-пищевых ингредиентов для спортивного, диетического и лечебного питания позволит значительно расширить сырьевую базу предприятий пищевой промышленности РФ и частично отказаться от импортного сырья. В связи с этим разработка возможных направлений использования дикорастущих растений Сибири при производстве специализированных пищевых продуктов и биологически активных добавок к пище является актуальной проблемой. Одними из растений, потенциал которых с позиций технологий общественного питания, биотехнологий, современной медицины и фармации раскрыт далеко не в полой мере, является семейство Ивовых (Salicaceae). Растения семейства Ивовые широко распространены по территории России, Ханты-Мансийского автономного округа – Югры и могут являться лекарственным и пищевым растительным сырьем [21]. Несмотря на многочисленные исследования [22-24], уровень знаний о свойствах и химическом составе вегетативных частей растений данного вида недостаточен [25-27], что объясняется большим их природным разнообразием [27], влиянием на химический состав различных внешних факторов [28].
Материал и методы исследования
Для проведения исследований в рамках города Ханты-Мансийска нами были отобраны образцы растительного сырья (осина обыкновенная (Populus tremula L.)) на территории г. Ханты-Мансийска. Растительное сырье было собрано в последней декаде августа 2017 г. Сбор листьев осуществлялся с веток средней части кроны деревьев. Листья высушивали в тени в проветриваемом помещение до содержания влаги 5-10%. После высушивания растительное сырье механически измельчали до размера частиц менее 1 мм при помощи лабораторной мельницы.
В качестве экстрагента использовали дистиллированную воду при соотношении сырье-экстрагент 1:10 методом бисмацерации. Были взяты два равнозначных объёма экстрагента. Измельченное растительное сырье заливали первым объемом экстрагента и оставляли на трое суток для получения извлечения, которое далее сливали. Уже проэкстрагированную растительную массу отжимали и заливали повторно определенным объемом экстрагента на 24 часа. Оба извлечения объединяли, очищали от балластных веществ отстаиванием при температуре 8 °С в течение трех суток. Далее продолжали очистку от хлорофилла и смолистых веществ фильтрованием через бумажные фильтры. Полученный объем упаривали до состояния вещества, характеризуемого влажностью не более 40%.
Анализ неорганических макро- и микроэлементов производился методом атомно-эмиссионной спектрометрии с индуктивно-связанной плазмой (ИСП-МС) на базе ООО «Микронутриенты» г. Москва.
Навеску 1,5 г пробы помещали в тефлоновый контейнер и добавляли 1,5 мл концентрированной азотной кислоты. Разложение пробы проводилось в микроволновой печи Berghofspeedwavefour в течение 20 минут при температуре 170-180 °С. После разложения содержимое контейнера доводилось деионизованной водой чистотой 18 мОм до конечного объема 15 мл.
Анализ образца проводился методом масс-спектрального анализа на приборе NexION 300D (Perkin Elmer Inc., Shelton, CT 06484, USA), оснащенном газонаполняемой ячейкой системы DRC для удаления интерференций и семипортовым дозирующим клапаном FAST, а также автодозатором ESISCDX4 (Elementa lScientificInc., Omaha, NE 68122, USA).
ИСП-МС система подготавливалась к работе согласно заводским спецификациям и калибровалась путем внешней калибровки по многоэлементным стандартам. Стандарты, содержащие по 0,5, 5, 10 и 50 мкг/л полный спектр определяемых элементов, готовились перед началом работы из набора опорных растворов Universal Data Acquisition Standards Kit (#N9306225, Perkin ElmerInc.) путем разбавления в дистиллированной деионизованной воде, подкисленной 1% HNO3. Для учета неполного соответствия матриц образцов и калибровочных растворов по кислотности и вязкости, при анализе применялась внутренняя стандартизация online по изотопу иттрий-89. Внутренний стандарт, содержащий 10 мкг/лY, готовился из опорного стандарта иттрия (#N9300167, Perkin ElmerInc.) на матрице, содержащей 8% 1-Butanol ((#1.00988, MerckKGaA), 0,8% TritonX-100 (Sigma #T9284 Sigma-Aldrich, Co.), 0,02 % TMAH (#20932, Alfa-Aesar, WardHill, MA 01835 USA) и 0,02% EDTAcid (Sigma#431788 Sigma-Aldrich, Co). В таблице 1 представлены условия анализа представленных образцов.
Таблица 1
Условия анализа
Параметр |
Значение |
Мощность |
1500 Вт |
Охлаждающий поток |
18 л/мин |
Вспомогательный поток |
1,6 л/мин |
Распыляющий поток |
0,98 л/мин |
Система ввода |
концентрический распылитель ESISTPFA и фторопластовая распылительная камера ESIPFA (Elemental Scientific Inc., Omaha, NE 68122, USA) |
Материал пробоотборных конусов |
Платина |
Инжектор |
ESI, кварцевый, внутр. диам. 2,0 мм |
Поток образца |
637 мкл/мин |
Поток внутреннего стандарта |
84 мкл/мин |
Время пребывания на массе и режим сканирования |
10-100 мс, прыжки по пикам для всех масс |
Циклов сканирования на цикл чтения |
1 |
Циклов чтения на реплику |
10 |
Число реплик |
3 |
Результаты исследования и их обсуждение
По результатам троекратного определения для средних значений полученных величин рассчитывались доверительные интервалы (α=0,95). В результате эксперимента было определено содержание ряда химических элементов в экстрактах растительного сырья (листья осины обыкновенной) (табл. 2). Исходя из полученных данных (табл. 2), максимальный процент от адекватного уровня потребления демонстрирует марганец, но и он не превышает верхний допустимый уровень потребления. Оценку биологической и пищевой ценности предлагаемых экстрактов в работе проводили на основе данных, регламентированных МР 2.3.1.1915-04, СанПиН 2.3.2.1078-01, ТР ТС 022/2011 МР 2.3.1. 2432-08 и согласованных с международными нутрициологическими нормами для различных групп населения РФ. Данные демонстрируют определенную количественную согласованность (разночтения в значениях не выходят за пределы 20-30%) гигиенических и нутрициологических норм по большинству показателей. Поскольку реальный дефицит большинства микроэлементов в рационе современного человека обычно находится в пределах от 20 до 50% от их рекомендуемой нормы потребления, то нижний предел содержания в предлагаемых для использования продуктах должен быть не менее 20-50% рекомендуемой нормы потребления этих веществ в суточной дозе. При определении верхнего предела содержания, допустимого к употреблению для человека, уже имеющего дефицит ряда элементов, необходимо исходить из соображений безопасности и ориентироваться на верхние допустимые уровни потребления МР 2.3.1.1915-04. Таким образом, при использовании густых водных экстрактов листа осины для оптимизации питания и коррекции витаминно-минерального статуса рекомендуемая доза приема не должна превышать 2–4 г в сутки, что будет соответствовать адекватному уровню суточного потребления элементов для здорового взрослого человека, не превышающему безопасный для здоровья предел потребления с учетом потребления нутриентных элементов в составе продуктов питания в соответствии с «Нормами физиологической потребности в пищевых веществах и энергии» (1991) и рекомендациями ФАО-ВОЗ [27; 28].
Таблица 2
Биологически активные химические элементы в продуктах водной экстракции листьев осины обыкновенной
Параметр |
Содержание элементов |
Сумма элементов, мг/г |
|||||
К, мг/г |
Na, мг/г |
Са, мг/г |
Mg, мг/г |
P, мг/г |
Mn, мг/г |
||
Густой водный экстракт листа осины, влага 40% |
6,3±1,7 |
0,92±0,3 |
7,8±1,6 |
9,1±1,9 |
1,0±0,5 |
0,33±0,7 |
34,7 |
Адекватный уровень суточного потребления элементов для взрослого человека в составе СПП* и БАД** к пище, мг |
2000 –2500 |
1300 –1500 |
1000 – 1200 |
400 – 500 |
800 –900 |
2,0 –3,0 |
|
% от адекватного уровня потребления согласно «Единым санитарно-эпидемиологическим и гигиеническим требованиям к товарам, подлежащим санитарно-эпидемиологическому надзору (контролю)» *** |
0,3 |
0,08 |
0,8 |
2,3 |
0,1 |
16,5 |
|
* СПП – специализированные пищевые продукты.
** БАД – биологически активные добавки.
*** Не превышает верхний допустимый уровень потребления.
Рассмотрим физиологические аспекты влияния изучаемых биоэлементов на организм человека. Важнейшими внутриклеточными элементами-электролитами являются калий (К), натрий (Na) и магний (Mg), и их дисбаланс в организме способен вызвать серьезные нарушения в функционировании биохимических процессов [28]. Снижение концентрации калия может быть вызвано избыточным поступлением в организм Na при избыточном потреблении поваренной соли, сахарном диабете, нарушении выделительной функции почек, склонности к гипертонии, отекам, при неврозах. Натрий – антагонист калия и лития [9]. Снижение содержания магния является обычным явлением для людей, подвергающихся хроническим стрессам. Избыток магния может приводить к дефициту кальция и фосфора [28]. Повышению усвоения кальция из пищи способствует двигательная активность. Избыток кальция в организме может вызывать дефицит цинка и фосфора. Но кальций является антагонистом свинца. При наличии одновременного недостатка в организме кальция и магния первоочередным является устранение дефицита магния [10]. Дефицит фосфора может вызывать слабость, утомляемость, мышечные боли, снижение функции печени. При избыточных концентрациях фосфора может снижаться содержание кальция, что создает риск возникновения остеопороза, и марганца [8-10]. Но прием препаратов, содержащих Са, опять же усугубляет дефицит Mn, так как затрудняет его усвоение в организме. Избыток магния способствует развитию астенических расстройств: повышению утомляемости, сонливости, снижению активности, ухудшению памяти, затруднению усвоения Mg и Cu [8; 27].
В настоящее время в ряде работ установлено [5; 29; 30], что исследование биосубстратов (ногти, волосы) при скрининговой оценке элементного статуса на индивидуальном и популяционном уровнях дает информативную и объективную картину для изучения функционального состояния организма человека. Исследования биосубстратов с целью изучения элементного статуса населения ХМАО-Югры, проведенные в течение 2005-2017 гг., обнаружили следующие отклонения в обеспеченности изучаемых биоэлементов в зависимости от возраста, гендерной принадлежности и профессиональной деятельности:
1) дефицит Na и Mn отмечался достаточно редко;
2) недостаточная обеспеченность организма К характеризовала элементный статус 40,8-17,4% взрослых некоренных жителей округа;
3) самые значительные отклонения в обеспеченности жизненно важными химическими элементами были выявлены нами в отношении Са: его недостаток (от умеренного до глубокого) был обнаружен у 42,6-32,9% взрослого населения северного региона;
4) дефицит Mg различной степени выраженности был обнаружен у 27,3-20,4% обследованных лиц из числа жителей ХМАО;
5) значительно реже мы выявляли недостаточную обеспеченность организма Р – 18,5-10,4%;
6) в разных группах обследованных лиц ХМАО был выявлен дефицит Со примерно у трети-четверти взрослого населения [10].
Обращает на себя внимание широко распространенный дефицит Са и Mg среди взрослого населения ХМАО. Помимо недостаточного потребления с продуктами питания, значимую роль в столь выраженной недостаточности двух биоэлементов играет химический состав природных вод Западной Сибири. Исследованиями установлен физиологически несбалансированный минеральный состав питьевой воды ХМАО: средние величины концентрации Са в водопроводной воде городов Сургута, Ханты-Мансийска, Нягани и Нефтеюганска оказались примерно в 6 раз ниже предельно допустимых уровней (ПДК), а Mg – в 3,5 раза ниже ПДК на фоне оптимальной концентрации Mn [28; 29].
Дефицит Na встречался в исследуемой популяции жителей ХМАО исключительно редко, значительно чаще мы наблюдали его избыток. Это можно объяснить, во-первых, достаточным содержанием данного химического элемента в большом количестве продуктов питания, а во-вторых, привычкой досаливать пищу.
Недостаточная обеспеченность Р также наблюдалась нечасто, что обусловлено широким диапазоном продуктов питания, содержащих этот биоэлемент [9; 10; 28].
Важно подчеркнуть достаточно часто встречаемый дефицит обеспеченности важнейшим химическим элементом для сердечно-сосудистой и нервной систем – калием (40,8-17,4%) [27]. Обеспеченность организма К, Са и Mg для нормального функционирования сердечно-сосудистой системы, Са, Р, Mg, Mn для костно-суставной системы, Na и К для водно-электролитного баланса и Со для кроветворной системы крайне важна, и дисбаланс данных элементов влечет опасность нарушений ионного гомеостаза и процессов жизнеобеспечения организма [10; 11; 31].
Профилактика и лечение заболеваний препаратами микроэлементов, с одной стороны, процесс длительный, т.к. при их дополнительном введении в виде фармакологических препаратов или БАД к пище они, как правило, медленно накапливаются в организме, а с другой стороны, абсолютно безопасный и демонстрирующий высокий терапевтический эффект при контроле адекватности содержания элементов в организме конкретного человека [9].
Оптимизация (исходя из региональной специфики) баланса микронутриентов, в первую очередь макро– и микроэлементов, является важнейшим направлением воздействия на демографические показатели региона и страны в целом, такие как рождаемость, продолжительность жизни и смертность. Вследствие этого необходима разработка и внедрение научно обоснованных региональных программ по коррекции элементного статуса населения, направленных на улучшение демографической ситуации, повышение качества жизни населения и уровня общественного здоровья [30; 31].
Заключение
Таким образом, для коррекции элементного статуса населения ХМАО-Югры могут быть использованы различные подходы: добавки в основные продукты питания примексов, прием витаминно-минеральных комплексов и биологически активных веществ. В то же время региональные особенности дисбаланса макро– и микроэлементов диктуют необходимость поиска источников соответствующих биоэлементов в растениях, произрастающих на территории округа. Определено, что экстракты густые водные из листьев осины обыкновенной могут быть рекомендованы к использованию для оптимизации питания и коррекции витаминно-минерального статуса, рекомендуемая доза приема не должна превышать 2–4 г в сутки. Доминирующим элементом является марганец и магний (2,3 и 16,5% от адекватного уровня суточного потребления элементов для взрослого человека соответственно).
Работа выполнена при поддержке гранта РФФИ 18-43-860003 р_а
Библиографическая ссылка
Корчин В.И., Корчина Т.Я., Нехорошева А.В., Леонов В.В., Леонова Л.В., Сазонова Н.А., Бондаренко О.М., Горников Н.В. ЛИСТЬЯ ОСИНЫ КАК ПЕРСПЕКТИВНЫЙ ИСТОЧНИК НУТРИЕНТНЫХ ЭЛЕМЕНТОВ // Современные проблемы науки и образования. 2019. № 2. ;URL: https://science-education.ru/ru/article/view?id=28608 (дата обращения: 03.04.2025).
DOI: https://doi.org/10.17513/spno.28608