Рак пищевода считается одним из наиболее неблагоприятных по течению и прогнозам злокачественных новообразований. Данный вид опухоли является причиной высокой смертности больных и находится на 6-м месте в мире по этому показателю, невзирая на постоянно совершенствующиеся методы лечения и тенденцию к снижению уровня заболеваемости [1, 2].
Основными формами первичных новообразований пищевода являются плоскоклеточный рак (в России 89–92% из всех случаев) и аденокарцинома (7–10% соответственно). Однако в некоторых странах Западной Европы и США наблюдается возрастание доли аденокарциномы по сравнению с плоскоклеточным раком вплоть до преобладания заболеваемости первой из них [3].
В целом успехи в лечении рака пищевода признают незначительными, а прогноз – неблагоприятным [4]. В течение последних десятилетий наблюдается стойкая тенденция к ухудшению ситуации за счет снижения дифференцировки опухолей данной локализации и роста вовлеченности в злокачественный процесс регионарных лимфоузлов [5].
Вышесказанное определяет неоспоримую важность разработки новых и усовершенствования существующих методов профилактики и лечения злокачественных опухолей пищевода [6], а также изучения их патогенеза и биологии, в частности факторов, определяющих рост и прогрессию [7].
Для развития онкологии на современном этапе необходимо совершенствовать экспериментальную базу, и в решении этой задачи особая роль отводится доклиническим испытаниям на лабораторных животных [8, 9, 10]. В области исследований новых противоопухолевых препаратов перспективным является создание экспериментальных моделей – ксенографтов, которые представляют собой человеческий опухолевый материал, трансплантированный в организм животного. Такие модели более адекватно отражают особенности злокачественного процесса в донорском организме, что определяет целесообразность их использования в исследованиях на этапе доклинической разработки и тестирования новых фармакологических субстанций.
Целью работы стал обзор данных, связанных с созданием эктопических и ортотопических моделей наиболее часто встречающихся гистологических типов рака пищевода, а также пищевода Барретта – потенциального предшественника аденокарциномы, на лабораторных животных, особенностями моделирования метастазов и использованием получаемых объектов в доклинических исследованиях. Проанализированы отечественные и зарубежные литературные источники. Произведен поиск тематических статей в русскоязычных базах по следующим ключевым словам: рак пищевода, ортотопическая модель рака пищевода, ксеногенная опухолевая модель пищевода, ксенографт. В англоязычных базах проведен по запросам: xenograft, orthotopic tumor models, models of esophageal cancers, animal models of cancer.
Модели опухолей пищевода человека, полученные на животных
Основная цель разработки моделей ксенотрансплантатов опухолей заключается в том, чтобы объединить фундаментальные и клинические исследования и дополнить данные, полученные при использовании систем in vitro [11]. Получаемые на животных модели создают платформу для изучения процесса опухолевого генеза в условиях in vivo, которая позволит лучше понять участие некоторых онкогенов или опухолевых супрессоров в развитии опухоли, раскрыть их сигнальные пути и механизмы онкологических заболеваний [12]. Также использование таких моделей может предоставить исследовательский инструмент для доклинического тестирования лекарственных средств: определения противоопухолевой эффективности препарата, его фармакокинетики и фармакодинамики [13]. Кроме того, ксеногенные опухоли, полученные на различных анатомических сайтах лабораторных животных, могут служить экспериментальной базой для проверки эффективности существующих и разработки новых методов обнаружения, а также мониторинга роста и дифференцировки злокачественных новообразований.
Наиболее часто используемыми животными для получения опухолевых моделей являются лабораторные мыши из-за нескольких ключевых преимуществ, таких как: наличие сопоставимого с людьми размера генома, короткий репродуктивный цикл и многочисленное потомство, низкие затраты на содержание, простота их обслуживания и т.д. [12]. В интересующем нас исследовательском направлении используются различные линии иммунодефицитных мышей, к которым относятся атимичные голые мыши nude (дефектны по Т-клеточному звену иммунитета), мыши SCID (имеют более тяжелую форму иммунодефицита) и мыши NOD/SCID (характеризуются сочетанием дефектов иммунной системы и нарушением обмена веществ) [8, 12, 13]. Среди этих линий мыши NOD/SCID демонстрируют более выраженный иммунодефицит, связанный с отсутствием или дефектом почти во всех типах иммунных клеток (В-, Т-, дендритные клетки, макрофаги и NK-клетки) [14].
На сегодняшний день в современной экспериментальной онкологии наиболее часто исследовательские работы проводят на эктопических ксеногенных опухолях, в то время как ортотопические ксенографты используют достаточно редко. Эктопические модели получают в результате трансплантации человеческого опухолевого материала в сайты, не соответствующие донорскому органу, из которого злокачественные клетки были взяты. Наиболее распространенным вариантом эктопической ксенотрансплантации является введение опухолевого материала под кожу реципиента, что связано с его очевидными преимуществами: технической простотой процедуры и наблюдения за ростом полученной опухоли.
Несмотря на это, подкожная опухолевая модель имеет существенные недостатки, поскольку далеко не полностью отражает клиническую ситуацию. Например, она не обладает гетерогенностью донорской опухоли, так как в большинстве случаев в качестве исходного материала используются линейные злокачественные клетки. Кроме того, подкожные ксенографты, полученные из опухолевого материала эктопических сайтов, находятся в нетипичном для них микроокружении, что делает их непригодными для изучения опухоле-стромальных взаимодействий, а также практически не способными к инвазии и метастазированию. При таких сильных и слабых сторонах эти модели в основном пригодны для изучения ранних этапов злокачественного процесса, механизмов канцерогенеза и биологии опухоли [15].
К эктопическим вариантам ксенотрансплантации также можно отнести введение клеточной суспензии человеческой плоскоклеточной карциномы пищевода мышам Balb/c Nude внутривенно и в левый желудочек сердца (как вариант внутриартериального введения). В отличие от подкожного и даже ортотопического вариантов трансплантации опухолевого материала, в данном исследовании эти модели дали активное метастазирование в органы-мишени, характерные для этой формы рака [16].
Методы создания ортотопических моделей рака пищевода
Ортотопические ксенотрансплантаты представляют собой альтернативу эктопическим моделям, используемым для исследований рака пищевода. Их получают путем имплантации клеточной суспензии или фрагмента опухоли в пищевод животных-реципиентов.
В результате анализа литературных данных, посвященных методам создания ортотопических моделей основных форм злокачественных опухолей пищевода, были выявлены некоторые трудности и особенности, связанные с достижением поставленных задач.
Процедуры их создания технически сложны, поскольку для этого требуются хирургическое вмешательство и анестезия животных. Отмечают особую трудность выполнения манипуляций по ортотопической ксенотрансплантации опухолей пищевода, которая связана с особенностями расположения и малыми размерами этого органа [17]. Тем не менее достигнуты определенные успехи в создании ортотопических моделей рака пищевода, в том числе путем моделирования пищевода Барретта [7, 18].
В работе Melsens Н. et al. описано пять вариантов хирургического эзофагеального доступа: средняя лапаротомия, средняя лапаротомия с трансжелудочным подходом, подреберная лапаротомия, трансоральный и шейный доступ [17]. Несмотря на относительно большое количество доступов к пищеводу и способов установки ортотопического ксенографта, наиболее часто применяются две основные методики, отличающиеся местом имплантации опухолевого материала: 1) в верхней части пищевода, тансорально [19]; 2) в нижней его части – вблизи гастроэзофагеального перехода, через желудок [16]. Оценка выживаемости мышей с ортотопическими опухолями в верхней и нижней частях пищевода показала, что последние жили дольше [10]. Также Ip J.C.Y. et al. на мышах Balb/cAnN-nu была разработана модель, полученная путем инъекции суспензии клеточной культуры в стенку среднего отдела пищевода, вблизи диафрагмы. Авторы заявляют о ее преимуществе по сравнению с ранее разработанными ортотопическими моделями плоскоклеточного рака пищевода [20].
Инокуляции суспензией опухолевых клеток со средой, по мнению ряда авторов [8, 17], дают лучшие результаты, чем SOI (surgery orthotopic implantation) – хирургическая имплантация фрагментов опухолевого материала в стенку пищевода [16]. Показано также, что улучшает приживаемость трансплантатов применение различного рода подложек и гидрогелей, например Matrigel [17, 21]. Последний представляет собой сложную смесь белков, протеогликанов и факторов роста межклеточного матрикса, которая обеспечивает клетки питанием и стимулирует их рост.
Существенными недостатками ортотопической модели рака пищевода являются медленный рост ксенотрансплантата [8, 17, 21], а также необходимость применения специализированных методов визуализации in vivo для мониторинга роста опухоли [22, 23].
Хотя создание ортотопических моделей требует больше времени, материальных и трудозатрат, они позволяют осуществлять исследование роста опухоли в адекватном гистологическом и молекулярном микроокружении, приближенном к клинической ситуации, и учитывать опухоле-стромальные взаимодействия [15]. Ксенотрансплантаты на основе полученного от пациентов опухолевого материала наиболее полно отражают иммуногистохимические и биохимические аспекты опухолевой болезни организма-донора по сравнению с подкожными ксенографтами, полученными в результате перевивки культуры клеток рака пищевода [21]. Несмотря на существующие трудности, связанные с созданием ортотопических ксенотрансплантатов, имеющиеся преимущества в виде способности к инвазии и метастазированию делают их ценной моделью для исследований поздних стадий опухолевого роста [24].
Основные характеристики и особенности методик по созданию подкожных и ортотопических ксеногенных моделей опухолей пищевода человека с использованием иммунодефицитных животных представлены в таблице.
Основные характеристики методов создания ксеногенных моделей опухоли пищевода человека с использованием иммунодефицитных животных
№ |
Автор, год, ссылка |
Вид и линия животных |
Опухолевый материал |
Сайт перевивки, способ введения |
Среда для введения |
Кол-во клеток |
1 |
Nishikawa T. et al., 2013 [25] |
мыши nude |
клетки линии ТЕ8 |
п/к – инъекция клеток; о/т – инъекция клеток в просвет пищевода |
Matrigel |
п/к 3×106 о/т 5×106 |
2 |
Kuroda S. et al., 2014 [22] |
мыши Balb/c nu/nu |
клетки линии ТЕ8, ТЕ8-Luc |
п/к – инъекция клеток; о/т – инъекция клеток в стенку пищевода через желудок |
Matrigel |
п/к 2×106 о/т 2×106 |
3 |
Hu T. et al., 2015 [16] |
мыши Balb/c nude |
клетки линии EC1, ЕС1-GFP |
п/к – инъекция клеток; в/в – инъекция клеток; в/кард – инъекция клеток; о/т – SOI – стенка нижней части пищевода |
нет информации |
п/к 5×106, в/в. 2×106 в/кард. 2×106 о/т фрагмент опухоли 1 мм3 |
4 |
Ip J.C.Y. et al., 2015 [20] |
мыши Balb/ /cAnN-nu |
клетки линии 81-T, SLMT-1, KYSE30, KYSE150 |
п/к – инъекция клеток; о/т – инъекция клеток в стенку средней части пищевода |
культуральная среда без добавок |
п/к 1×106 о/т 5×104 5×105 |
5 |
Chiu W-Ch. еt al.,2016 [26] |
мыши Balb/cAn.Cg-Foxn 1nu/CrlNarl |
клетки линии ТЕ8, KYSE70 |
п/к – инъекция клеток; о/т – инъекция клеток в стенку нижней части пищевода |
нет информации |
п/к 5×106; о/т 1×106 |
6 |
Melsens E. et al., 2017 [17] |
мыши Foxn1nu |
клетки линии ОЕ33, ОАСМ5 1.С |
п/к – инъекция клеток; о/т – инъекция клеток в стенку нижней части пищевода |
Matrigel
|
п/к 1×106 5×106; о/т 1×106 |
7 |
Shi Y. et al., 2017 [9] |
мыши nu/nu; крысы nude |
клетки плоскоклеточного рака пищевода человека (линия не уточняется) |
п/к – инъекция клеток (мыши); о/т – инъекция клеток в стенку шейного отдела пищевода (крысы) |
Matrigel |
п/к 5×106 1×107 о/т 5×106 1×107 |
9 |
Tung L.N. et al., 2018 [10] |
мыши nude
|
клетки линии KYSE-150, KYSE-180, KYSE-270, KYSE-410, KYSE-450 |
о/т – крысы, в стенку шейного или абдоминального отдела пищевода |
Matrigel |
о/т 1×106 |
Примечания: п/к – подкожная имплантация; о/т – ортотопическая имплантация
Использование ортотопических моделей рака пищевода в доклинических исследованиях (ДКИ)
В результате анализа доступных литературных источников были получены сведения о различных направлениях доклинических испытаний новых противоопухолевых препаратов и воздействий на моделях животных с пациентоподобными опухолями пищевода.
Так, например, Nishikawa T. et al. продемонстрировали антипролиферативный эффект нового ингбитора mTOR – темсиролимуса на nude-мышах. Успешность испытания выражалась в почти шестикратном торможении роста подкожных ксенографтов по сравнению с контролем и в достоверном увеличении продолжительности жизни животных-опухоленосителей с ортотопически перевитым плоскоклеточным раком пищевода [25].
Также было изучено фармакологическое действие β-нитростирола (производного CYT-Rx20) на клетки рака пищевода в ДКИ, проведенном на мышах Chiu W-C. et al. В данном исследовании удалось выявить цитотоксическое действие препарата, выражавшееся в стимуляции апоптоза злокачественных клеток. Доказано ингибирование миграции и инвазии раковых клеток линии KYSE70 in vitro, и, кроме того, было продемонстрировано значительное торможение опухолевого роста и снижение частоты метастазирование в легкие мышей-опухоленосителей на ортотопической модели рака пищевода [26].
В опытах, проведенных на иммунодефицитных крысах с ортотопически перевитой плоскоклеточной карциномой, предварительно пассированной в подкожном сайте мышей nude, показана возможность повышения эффективности химиотерапии за счет применения внутрипищеводной радиочастотной гипертермии [9].
Применение нового аналога куркумина SSC-5 привело к ингибированию роста и инвазии плоскоклеточного рака пищевода, ортотопически перевитого nude-мышам [10].
Тестирование аденовирусной вакцины Ad.E7 было проведено на мышах с ортотопической опухолью рака пищевода. Выявлено, что вакцинация способствовала снижению локального опухолевого роста и увеличению общей выживаемости животных-опухоленосителей [27].
Определение онкогенных потенций медицинских иммунобиологических препаратов также является одним из обязательных разделов доклинических исследований, в которых используют ксенографты опухолей пищевода [8].
Помимо вышеперечисленных направлений, модели ксенотрансплантатов опухолей пищевода применяются в разработках по созданию и усовершенствованию новых методов биомедицинской визуализации, призванных контролировать злокачественный рост и терапевтический эффект от применяемых противоопухолевых воздействий. Так, на мышиных моделях получены биолюминесцентные изображения ортотопических опухолей пищевода, а также регионарных и отдаленных метастазов [20, 21, 22]. Параллельное использование методов флюоресценции и МРТ повышает точность дифференцировки жизнеспособных опухолевых клеток от рубцовой ткани и остатков препарата Matrigel после ксенотрансплантации аденокарциномы пищевода [28]. Эксперименты на животных показали, что использование контрастного агента в оптической когерентной томографии может повысить эффективность обнаружения опухолей даже на ранних стадиях злокачественного процесса [29]. В исследованиях плоскоклеточного рака пищевода были предприняты активные шаги к повышению разрешающей способности оптической когерентной томографии, чтобы получить возможность послойной визуализации стенки пищевода мыши [30]. Такие усилия дали положительный результат благодаря эффективному усилению контрастности изображения в экспериментальных исследованиях, связанных с применением наночастиц в качестве контрастного агента [31].
Заключение. В целом модели опухолевых ксенотрансплантатов являются универсальной экспериментальной платформой для исследований канцерогенеза, опухолевого роста и прогрессии, а также могут успешно применяться для доклинического тестирования препаратов и разработки методов биомедицинской визуализации.
Библиографическая ссылка
Кит О.И., Колесников Е.Н., Максимов А.Ю., Протасова Т.П., Гончарова А.С., Лукбанова Е.А. МЕТОДЫ СОЗДАНИЯ ОРТОТОПИЧЕСКИХ МОДЕЛЕЙ РАКА ПИЩЕВОДА И ИХ ПРИМЕНЕНИЕ В ДОКЛИНИЧЕСКИХ ИССЛЕДОВАНИЯХ // Современные проблемы науки и образования. – 2019. – № 2. ;URL: https://science-education.ru/ru/article/view?id=28606 (дата обращения: 02.11.2024).