Попытки зашить кишечную рану предпринимались с древних времен. Первые европейские сообщения об анастомозировании кишечной стенки связаны с методикой перчаточников: раны кишечной стенки сшивались сквозным обвивным непрерывным швом, концы нитей не срезались, а выводились через рану брюшной стенки, и сшитый фрагмент фиксировался к париетальной брюшине [2, 8, 9, 13].
Нить извлекалась тогда, когда цирюльник считал это безопасным. Восстановление кишечного пассажа при соединении полых органов в XVII веке, кроме закрепления соединяемых краев, пытались достичь введением внутрипросветных стентов (Lanfrank). Описанная в то время техника «четырех мастеров» (Roger, Jamerius, Salice to and Theodoric of Servia) заключалась во введении в просвет кишки трубки из бузины, тростника или гусиной трахеи и сшивании кишечной стенки над ней четырьмя узловыми швами. Общую доктрину того времени характеризуют слова Ch. В. Zang, сказанные в 1818 году: «...каждый кишечный шов это чрезвычайная операция на чрезвычайно ранимом органе, и поэтому является ... очень опасным предприятием» [2, 3, 7, 8].
В 1812 году Траверс (Travers В.) из клинических и экспериментальных наблюдений за кишечными ранами впервые сделал вывод о том, что техника анастомоза не так важна, как плотный контакт сшиваемых органов по всей окружности. Автор считал предпочтительным соприкосновение серозных поверхностей [2, 4, 8].
В 1824 году Jobert А. предложил узловой однорядный, сквозной инвагинирующий кишечный шов. Кишечный шов, предложенный Lembert А. в 1826 году, был однорядным узловым инвертирующим с узлами на серозе. В клинике он был впервые использован в 1836 году J.F. Dieffenbach для формирования тонкокишечного соустья [3, 4, 13].
Одной из первых модернизаций этого шва был шов Пирогова, об опыте применения которого автор сообщил в 1864 году. Еще не осознавая значимости подслизистого слоя, Н.И. Пирогов описал прецизионный серозно-мышечно-подслизистый экстрамукозный кишечный шов и экспериментально показал макроскопические события при его использовании. В 1887 году Halsted W.S. предложил методику однорядного П-образного шва. Интерес к однорядному шву с новой силой возник в 50–60-е годы после опубликования результатов его применения В.П. Матешуком в СССР и Gambee L. и др. в США. По мнению В.П. Матешука и Е.Я. Сабурова, двухрядная техника шва просто была принята на веру и получила широкое распространение, вполне устраивая большинство хирургов своей удачной симуляцией надежности, прочности и будто бы большей герметичности швов. Эту точку зрения разделяли и другие хирурги, что привело к тому, что в настоящее время во Франции, Швейцарии и Великобритании однорядный шов применяется чаще многорядных методик. С конца 60-х вновь стали появляться работы о применении однорядного непрерывного шва. В 1968 году Johnson S.R. сообщил о 177 гастроэнтероанастомозах после резекции желудка, сформированных однорядным непрерывным швом (ОНШ) с помощью хромированного кетгута. Недостаточности соустий не было отмечено. Улучшение качества шовных материалов привело к достаточно широкому распространению этой техники. Hautefeuille Р. в 1976 году сообщил об 1 % несостоятельности после использования ОНШ на всех отделах желудочно-кишечного тракта, в том числе при пищеводнокишечных и колоректальных анастомозах. В качестве шовного материала использовались синтетические монофиламентные рассасывающиеся материалы. Delaitre и др. в 1977 году сообщил о 101 однорядном непрерывном гастроэнтеростомозе синтетическими монофиламентными рассасывающимися материалами после резекции желудка без единой несостоятельности [6, 8, 9, 12, 13].
Sarin S., Lightwood R.G. и др. в 1989 году сообщили о 5 % несостоятельности после тонко и толстокишечных анастомозов. Использовались синтетические монофиламентные рассасывающиеся материалы. Mickley V. и др. в 1991, используя тот же шовный материал, сформировали 264 анастомоза на тонкой и толстой кишке. Процент несостоятельности составил 0,7 [2, 8, 9].
Demartines N. и др. в 1991 г. сообщили о 96 однорядных непрерывных гастроэнтероанастомозах после резекции желудка с помощью синтетических монофиламентных рассасывающихся материалов. Несостоятельность составила 2,1 %. Thomson W.H.W., Robinson М.Н.Е. и др., 1993, используя ту же технику и те же шовные материалы, на 200 толсто- и тонкокишечных анастомозов получили 4 (2 %) несостоятельности. Ceraldi СМ. и др., 1993 на 44 толстокишечных анастомоза однорядным непрерывным полипропиленовым швом сообщили о несостоятельности 6,8 %. Для сравнения авторы приводят цифру 9,5 % несостоятельностей для двухрядного шва. Егиев В.Н. и др., 1993 г. и Егоров В.И. и др., 1995 г., соответственно для 123 и 157 гастроэнтероанастомозов, сформированных ОНШ Chittmittrapap S. и др., 1993, на 121 однорядный непрерывный гастроэнтероанастомоз синтетическим монофиламентным рассасывающимся материалом (СМРМ) отметил 1 несостоятельность (0.8 %). Houdart R., 1994, сообщил о 464 однорядных непрерывных анастомозах на всех отделах желудочно-кишечного тракта с помощью СМРМ с несостоятельностью 0,7 %. Буянов В.М. и др., 2000, сообщили о 3605 анастомозах ОНШ в хирургии желудочно-кишечного тракта, желчных путей и поджелудочной железы с помощью синтетических моно- и полифиламентных рассасывающихся материалов и полипропиленом. Процент несостоятельности при гастроэнтеро- и энтероэнтеростомии равнялся 0,04, в колоректальной хирургии – 1,8, в хирургии желчных путей и поджелудочной железы – 0. Маскин С.С. и др., 2001 опубликовали данные об успешном применении ОНШ рассасывающимися шовными материалами при геморроидэктомии у 50 больных [1, 2, 3, 7, 9, 11].
Настоящим испытанием для любой хирургической техники является ее применение в экстренных условиях и в колоректальной хирургии. Сравнение результатов экстренных резекций желудка и тонкой кишки, выполненных с применением однорядного непрерывного и двухрядного швов, показало значимые преимущества первого [2, 3]. Низкий процент осложнений при использовании ОНШ в хирургии толстой и прямой кишки также является весомым доказательством его надежности. История проблемы, виды и способы кишечных швов с помощью синтетических моно- и полифиламентных рассасывающихся материалов, не отметили несостоятельностей. Экспериментальные исследования, проведенные на животных, во многом объяснили результаты применения ОНШ, обнаружив минимальные нарушения микроциркуляции, невыраженные воспалительные и рубцовые изменения в области соустья при использовании этого метода.
Несмотря на значительные успехи современной абдоминальной хирургии, одним из тяжелейших осложнений в раннем послеоперационном периоде после резекций и реконструктивных операций на полых органах брюшной полости является несостоятельность швов анастомоза. По данным разных авторов, колеблется от 3 до 32,1 % с летальностью, достигающей от 5,7 до 89,0 % [1,8, 9]. При наличии внутрибрюшной инфекции частота несостоятельности кишечных швов возрастает в 2 раза. Основными причинами развития этого тяжелого послеоперационного осложнения считают: высокое внутрипросветное давление, нарушение микроциркуляции и биоэнергетики кишечной стенки, гипоксию ее тканей, инфицирование брюшной полости и колонизацию просвета кишечника высоковирулентной микрофлорой [8, 9, 10, 11].
Несмотря на разработки, в этой проблеме до настоящего времени, ряд положений еще не изучен в достаточной степени. Не выяснено влияние на качество кишечного шва травмы слоев кишечной стенки и состояния кровообращения в краях раны при различном ходе лигатуры в области шва.
В связи с этим только лишь совершенствование способа наложения кишечного шва или формирования анастомоза не является единственным условием достижения успеха в решении этой сложной проблемы.
Поэтому одни авторы «за», другие категорически «против» формирования первичного анастомоза после резекции кишечника в условиях непроходимости и перитонита [2-6, 8, 9].
Вместе с тем известно, что существенное значение в профилактике несостоятельности кишечного анастомоза имеют: правильный выбор шовного материала и способа повышения механической прочности и биологической герметичности соустья, использование эффективных способов декомпрессии, лаважа и дренирования не только просвета кишечника в целом, но и селективной внутрипросветной декомпрессии и деконтаминации шовной линии анастомоза, продолжая при этом энтеральную терапию и интенсивное лечение перитонита [8- 12].
На сегодняшний день проблеме кишечных швов посвящено большое количество исследований (преимущественно в медицинской хирургии). Многообразие видов кишечного шва – более 450 (В.Н. Егиев, 2002) и появление новых методов его наложения (аппаратный шов, использование компрессионных устройств, клеевых композиций и т.п.), свидетельствует об известной неудовлетворенности хирургов достигнутыми результатами.
Современные новинки биотехнологий успешно реализованы сегодня в области клеточной медицины, биохимии высоких молекулярных соединений, биофизики и общей хирургии.
Эффективность лечения многих заболеваний и восстановительные процессы утраченных функций организма принадлежат в настоящее время открытиям новейшей биоинженерии. Учеными разработаны уникальные реконструктивные биоматериалы, позволяющие значительно повысить уровень и качество жизни пациентов. Особое значение в сфере общей хирургии приобретают биодеградируемые ультратонкие матриксы, которые представляют собой термопластичные полимеры, совместимые с организмом человека. Их использование становится все более актуальным в области трансплантологии, тканевой и клеточной медицины во всех высокоразвитых странах мира. Образцы изделий на основе ПГА (полигидроксиалконоаты) содержат высокоочищенную структуру, идеальную для биохирургического назначения. В качестве матрикса представлены ультратонкие прочные пленки, эффективные для заживления гнойных ран и других тканевых повреждений.
Биодеградация вследствие внедрения материала зависит от химического состава биополимера, особенностей его формы и места имплантации в организме. В настоящее время разработано более 100 видов ПГА различного химического и физического состава. Их главными преимуществами являются остеопластичность, биоинертность, отсутствие токсических реакций, вывод продуктов метаболизма и медленная деградация. Биологические полигидроксиалконоаты и их качества определяются:
- Характером взаимодействия с клетками человеческого организма.
- Особенностями протекания регенераторных процессов.
- Реакцией тканей на внедрение биоматериала.
Интеграция биоискусственных изделий с живыми клетками имеет важное значение для пациентов с дефектами различного происхождения и стоит главной задачей создания эффективных биологически совместимых материалов. Несмотря на ультратонкие моножильные волокна, матриксы обладают высокой степенью прочности (306 МПа) и упругости (3ГПа).
Внедренные в организм биодеградируемые ультратонкие матриксы, как и любые другие инородные фрагменты, капсулируются, отделяясь от живых клеток соединительной тканью. То есть немедленно активизируются процессы, защищающие организм от инородного тела. Время физического заживления – величина переменная и зависит от многих факторов, причин и характера протекания болезни.
I этап – внедренный матрикс покрывается слоем лейкоцитов, стимулируя свертываемость крови;
II этап – происходит миграция фибропластов к месту имплантации, образуя гранулему;
III этап – дифференцирование фибропластов в фиброциты;
IV этап – выработка коллагена.
На ускорение регенеративных функций организма во время лечения биоматериалами оказывает влияние термопластичность и гидрофобность матриксов ПГА, а также высокие свойства адгезии, биоразрушаемости и биосовместимости с клетками тканей человека. Полигидроксиалконоаты со временем не теряют своих свойств и не вызывают аллергических реакций. Стерилизация материалов ПГА возможна любыми традиционными способами:
- сухая обработка нагреванием (170 градусов);
- автоклавирование в дезинфицирующем растворе (120 градусов);
- воздействие ультрафиолетом и гамма-облучением;
- очистка через стерильный, пористый фильтр (поры 0,2 мкм);
- химическая обработка – 70 % спирт как очищающий реагент;
- ЕТО – использование газа оксид этилена (время 3–7 дней).
Лидирующим и самым хорошо изученным из представителей ПГА является полигидроксибутират ПГБ – полимер с высококристаллической структурой. Этот материал обладает отличной биосовместимостью и присутствует в тканях организма в качестве продуктов распада. С помощью разработок нанотехнологий получены особо тонкие крепкие волокна разного диаметра, сформированные в нетканые матриксы. Важным показателем для идеальной биологической совместимости полимерных материалов является структура их поверхности из полилактида (шероховатость, фазовый и химический состав). Понятие «полимер» состоит из двух основ – «поли», что значит много и «мера» – единица. Таким образом, полимер представляет собой сложную структурированную молекулу, состоящую из большого количества различных элементов.
Физико-химические параметры ПГА:
По свойствам термопластичности полигидроксиалконоаты похожи на синтетические виды полимеров, таких как полиэтилен, полипропилен и т.п.
Механические свойства видов ПГА:
- Упругость и твердость;
- Эластичность (резиноподобные качества);
- Вязкие жидкости;
- Степень кристаллизации материала меняется по прохождении времени. Безопасность использования биодеградируемых материалов. С 1999 года в Российской Федерации введен ГОСТ по «Оценке биологического воздействия медицинских изделий», а в 2007 году вышел Приказ Министерства здравоохранения «Об утверждении… выдачи разрешений на использование новых медицинских технологий». В целях контроля над степенью потенциального риска разработана государственная официальная специализированная классификация рисков.
Технические методы изготовления имплантируемых пленок основаны на создании абсорбируемых конструкций для культивирования клеток живого организма, поврежденных в результате травмы или болезни. Биодеградируемые ультратонкие матриксы – это своеобразные каркасы, задающие рост клеткам для образования будущих тканей. Матрикс-каркас состоит из сетки макропор (более 100 мкм в диаметре), соединенных друг с другом, и действует внутри ткани в трех измерениях. Идеальная структура матрикса должна эффективно стимулировать ангиогенез (формирование кровеносных сосудов) и содержать нетоксичные продукты процесса метаболизма. Биоматериал активизирует клетки для создания самогенерации и нормализации функции вывода и доставки веществ. Кроме того, все механические характеристики матрикса должны соответствовать свойствам «живой» ткани. Биологические функции ПГА обеспечивают разрушение установленных межклеточных контактов в структуре поврежденной ткани. Рассасывание пленок биоискусственного имплантанта происходит именно тогда, когда регенерируется достаточное количество клеток организма хозяина.
Успешные результаты внедрения созданных полимеров стали научным феноменом в лечении многих хирургических заболеваний! Благодаря развитию высоких биотехнологий и прогрессивному мировоззрению наших врачей, использование биологических матриксов в России становится все более актуальным методом лечения сложных травматических повреждений.
Развитие современной науки в области биотехнологий привело к эффективному применению высокомолекулярных полимеров различной природы происхождения. Это позволило охватить широкий диапазон ценных методик лечения в различных направлениях медицины.
Биодеградируемые ультратонкие матриксы ПГА открыли для современной хирургии новый, более совершенный уровень фундаментальных основ и профессиональных знаний о взаимодействиях биоматериалов с клетками человека!
А.В. Шотт, А.А. Запорожец и др. (1994) считают, что «каждый хирург с большим и средним опытом практической работы подобрал для себя определенный вид кишечного шва, освоил его и применяет с определенным удовлетворением». В таких условиях хирург не видит и не знает, что происходит в зоне наложенного им кишечного шва и не может оценить критически своих действий, в то время как положительные результаты часто достигаются лишь благодаря защитным механизмам организма. Следовательно, сущность кишечного шва необходимо оценивать не только с практических, но и с теоретических позиций [8, 9].
В настоящее время в абдоминальной хирургии по-прежнему доминируют разновидности ручного шва. При этом среди хирургов растет число сторонников применения однорядного его варианта. Они считают, что увеличение числа рядов шва не снижает риска его несостоятельности [2, 6, 8, 9].
Поэтому для существенного улучшения ближайших и отдаленных результатов необходимо не только приобретение и усовершенствование мануальных навыков, но и применение современных, более «физиологичных» схем и методов оперативного вмешательства.
Такого же правила следует придерживаться при ушивании лапаротомных ран, осложнения при заживлении которых (эвентрации, послеоперационные грыжи и т. д.) в большинстве случаев связаны с упущениями при наложении швов и выборе шовного материала. Несостоятельность швов на брюшной стенке может не только осложнить состояние пациента, но и «свести на нет» успех любой операции.
Выбор шовного материала определяется хирургическим замыслом и, соответственно, к нему предъявляются определенные требования. В настоящее время на мировом рынке появился широкий выбор современных шовных материалов, вплоть до специализированных нитей, предназначенных для конкретных хирургических вмешательств. К сожалению, хирурги недостаточно информированы о видах шовных материалов и возможностях их применения.
Разнообразные и нередко противоречивые литературные данные о достоинствах и недостатках тех или иных швов и шовных материалах свидетельствуют о постоянном и неослабевающем интересе хирургов к данной проблеме [2, 8].
Библиографическая ссылка
Василеня Е.С., Кочетова Л.В., Пахомова Р.А., Карапетян Г.Э., Назарьянц Ю.А. ВЫБОР ШОВНОГО МАТЕРИАЛА В АБДОМИНАЛЬНОЙ ХИРУРГИИ // Современные проблемы науки и образования. – 2016. – № 6. ;URL: https://science-education.ru/ru/article/view?id=25592 (дата обращения: 06.12.2024).