Фармакология, являясь одной из наиболее динамично развивающихся медико-биологических дисциплин, остается «краеугольным камнем» для современных студентов. Арсенал лекарственных средств постоянно растет и уже насчитывает более 100 000 только безрецептурных препаратов, в основе которых 800 лекарственных субстанций [22]. Ежегодно одобряется около 26 новых лекарств, из которых треть – первые в классе (first in class) [12], мишени для их действия идентифицируют несколько медленнее – со скоростью 5,3 в год [20]. Однако развитие современных технологий ведет к выявлению новых мишеней для уже одобренных лекарств, уточнению их механизмов действия и появлению новых показаний и противопоказаний к применению, что даже послужило причиной для появления термина polypharmacology - полифармакология, опосредованность фармакологического эффекта препарата одновременным действием на несколько белков-мишеней [20]. Такой объем постоянно растущей информации, безусловно, труден для восприятия, поэтому фармакологию справедливо относят к одной из сложнейших медицинских дисциплин [26].
С другой стороны, динамичные темпы роста drug discovery бросают вызов не столько современному поколению студентов, сколько педагогам-фармакологам. Вызов может быть принят ими только в случае принципиального изменения подходов к преподаванию дисциплины, когда внедрение инновационных технологий познания приведет к качественному росту темпов ее усвоения, развитию навыков получения валидной информации о лекарствах и возможности ее практического применения.
В то же время методы изучения фармакологии существенно не меняются уже несколько десятилетий. Большинство вузов, в том числе и зарубежных, практикуют устоявшуюся модель, базирующуюся на комбинации лекций, практических занятий и самостоятельной работы, соотношение которых зависит от принятой образовательной парадигмы [21].
Начиная с 90-х годов прошлого столетия, главным образом за рубежом, в технологии обучения фармакологии стали использовать личностно ориентированный подход, базирующийся на применении активных и интерактивных методов: «работы в малых группах», «обучающих игр», «интерактивных лекций», «обсуждения сложных и дискуссионных проблем», «кейс-метода», «тестирования и экзамена с последующим анализом результатов» [8; 24]. При этом и студент, и педагог - субъекты учебного процесса, а педагог чаще выступает лишь в роли организатора процесса обучения, лидера группы, обеспечивающего условия для инициативы учащихся, и чаще всего его называют tutor - наставник, руководитель группы студентов. Успешность реализации этого подхода во многом зависит от «качества» обратной связи между студентом и преподавателем, которая позволяет управлять процессом обучения и усвоения информации [2], однако одной из определяющих успеха является учебно-методическая база, от которой также в немалой степени зависит эффективность усвоения материала под руководством наставника.
Значительная часть исследований, посвященных методологии преподавания фармакологии, говорит о большей эффективности и предпочтении студентами интерактивных методов [10; 13; 15; 17; 25]. Среди множества вариантов интерактивного взаимодействия наиболее высоко оцениваются «интерактивные лекции с билатеральными связями». Предпочтение этого вида занятий всем прочим колеблется в диапазоне 47–60% от общего количества опрошенных студентов [9; 23; 25]. Только около 4% называют «интересными и полезными» традиционные лекции, читаемые для больших аудиторий.
Такой «классический стиль» чтения лекций (с использованием пассивной формы обучения для больших аудиторий) рассматривается как неэффективный и устаревший метод изучения фармакологии, главным недостатком которого является отсутствие взаимодействия. Кроме того, имея текст лекции, студенты предпочитают, не посещая их, изучить тему самостоятельно, а время, отведенное для лекций, просто пропадает [21]. Интерактивный режим чтения лекций предполагает частую обратную связь лектора и аудитории с применением таких активных форм обучения, как фасилитация; ведомая (управляемая) дискуссия или беседа; модерация; демонстрация слайдов или учебных фильмов; мозговой штурм; мотивационная речь [1; 19].
В то же время в ряде российских вузов фармакологи активно практикуют кейс-метод (case-study) и проблемно-ориентированное обучение (problem based learning). По данным [5], инновационные интерактивные педагогические методики с использованием информационных технологий присутствуют примерно в половине медицинских и фармацевтических вузов. Главным образом, это касается клинических дисциплин, тем не менее ситуационные задачи с поиском информации для ее решения применимы и для общей фармакологии. Пример алгоритма составления подобных интерактивных заданий problem based learning дан в работе [5]. Однако для внедрения в практику problem based learning необходимы компьютерные классы с персональным для каждого обучающегося высокоскоростным доступом в Интернет и локальная сеть для обмена и совместного доступа к документам. Поэтому к причинам, по которым пока интерактивные методы обучения фармакологии не используются широко в России, относятся не только высокие затраты времени на разработку интерактивных курсов, но и отсутствие необходимой ресурсной базы и, что не маловажно, эффективной мотивации и вознаграждения персонала за внедрение прогрессивных методов обучения [15].
В ГБОУ ВПО «БГМУ» Минздрава России при проведении практических занятий по фармакологии традиционно применяют интерактивные методы обучения, внедряя элементы проблемно-деятельностного подхода через работу в мини-группах, дискуссию, мозговой штурм, что повышает мотивацию обучающихся, развивает коммуникативные навыки, заставляет анализировать собственную эффективность и эффективность совместной коллективной деятельности. Подобный подход позволяет формировать ключевые компетенции (ОК, ОПК, ПК), необходимые врачу-специалисту.
Очевидно, что интерактивные методы обучения стали неотъемлемой частью образовательного процесса в медицинском вузе. В перспективе доля инновационных технологий обучения будет только расти, поскольку недавно утвержденный ФГОС ВО [6] дает право образовательным организациям применять электронное обучение и дистанционные образовательные технологии, а наличие электронной информационно-образовательной среды в вузе является одним из обязательных требований, предъявляемых к образовательным организациям.
В настоящее время под информационно-образовательной средой понимают информационно-коммуникационное образовательное пространство, базирующееся на технологической платформе и представляющее собой совокупность взаимосвязанных подсистем, целенаправленно обеспечивающих педагогический процесс (например, информационная, техническая, дидактическая, методическая) и др. [4].
В ГБОУ ВПО «БГМУ» Минздрава России частью такой информационно-образовательной среды является Учебный портал. Портал разработан на платформе Moodle, представляющей собой систему управления курсами (электронное обучение), также известную как система управления обучением или виртуальная обучающая среда (Modular Object-Oriented Dynamic Learning Environment – в пер. с англ. «модульная объектно ориентированная динамическая обучающая среда»). Это свободное (распространяющееся по лицензии GNU GPL) веб-приложение, предоставляющее возможность создавать сайты для онлайн-обучения [18]. Портал обеспечивает доступ к учебным планам, рабочим программам дисциплин (модулей), практик, к изданиям электронных библиотечных систем, к учебно-методическим комплексам дисциплин кафедр и может выступить в качестве идеальной платформы для реализации интерактивных технологий обучения.
Широкие возможности Moodle отмечаются многими российскими и зарубежными исследователями [3]. Технологический инструментарий системы управления обучением Moodle насыщен разнообразными интерактивными элементами, предназначенными для организации общения и сотрудничества преподавателей и студентов. В отличие от других активных технологий обучения интерактивные (inter – взаимный, act – действовать; interaction – взаимодействие, обмен информацией) предусматривают, наряду с сотрудничеством студентов с преподавателями, их взаимодействие друг с другом в режиме беседы и диалога в целях поддержки обучения [7]. Так, работа с элементом «задание» позволяет преподавателям добавлять коммуникативные задания, собирать студенческие работы, оценивать их и предоставлять отзывы. Схожий элемент «семинар» открывает возможность оценивать работы не только преподавателям, но и самим обучающимся. Элемент «тест» является эффективным инструментом контроля знаний, не требующего участия преподавателя. Такие элементы, как «чат» и «форум», обеспечивают непрерывную коммуникацию между участниками образовательного процесса.
Привлекательной технологией, реализация которой возможна посредством учебного портала, является технология, описанная профессорами Стэнфордского университета Чарльзом Пробером (Charles Prober) и Чипом Хезом (Chip Heath), которые предложили отказаться от лекции в традиционном понимании и перейти в медицинских вузах на обучение с использованием парадигмы, уже реализованной Салманом Ханом [14] в его одноименной онлайн-академии. Статья под названием «Лекционные залы без лекций» профессора опубликована в 2012 г. в майском номере The New England Journal of Medicine [21]. Авторы предлагают использовать вместо лекций 10-15 минутные видеоролики, содержащие основной лекционный материал, который доступен для самостоятельного домашнего изучения. Высвобожденное от лекций время должно быть использовано для интерактивного обсуждения темы, ключевым моментом которого должна быть «высокая эмоциональная и познавательная составляющая», например яркие примеры из клинической практики. К его достоинствам авторы относят возможность индивидуализировать процесс обучения: время, кратность просмотров, скорость и степень усвоения материала. Результативность процесса студент оценивает самостоятельно с помощью тестов, а преподаватель реализует возможность индивидуализировать обучение, группируя студентов, равных по уровню базовой подготовки, в «малые группы» для обсуждения темы, акцентируя внимание на вопросах, требующих пояснений, и контролируя эффективность самостоятельной подготовки и прогресс студента online. В последнее время эта образовательная модель активно практикуется в Силиконовой долине. Khan Academy уже выпустила более 2700 видео, которые просматривают ежемесячно более 3,5 млн студентов, выполняющих более 2 млн онлайн-упражнений каждый день.
Charles Prober и Chip Heath уверены в высокой эффективности этого метода: первый базовый курс биохимии в Stanford Medical School, проведенный по этой модели, посетило вдвое больше студентов, хотя посещение было добровольным, а количество положительных отзывов резко увеличилось. Доказательства эффективности интерактивных онлайн-консультаций (с помощью видеороликов) получены и при изучении других дисциплин. Например, Stanford’s computer science department, организовав ряд курсов с использованием видеороликов вместо аудиторных лекций, зарегистрировали существенный рост посещений. А три курса информатики, предлагаемые бесплатно online вне стен Stanford University, были просмотрены более чем 350 000 абитуриентами со всего мира [21].
Аналогичные результаты получены при изучении физики. В недавнем исследовании сравнили две модели изучения бакалаврами курса физики, пользующегося большой популярностью. В одном случае практиковалась традиционная модель лекционного курса, который вел лауреат Нобелевской премии. Во втором - была использована модель интерактивного взаимодействия, занятия вели простые ассистенты, которые обсуждали реальные проблемы, с какими могут встретиться практикующие физики. Эффективность и удовлетворенность результатами обучения была выше (результативность обучения - 74% в сравнении с традиционной моделью – 41%) [11].
Результаты метаанализа, опубликованные в Washington, DC: Department of Education, Office of Planning, Evaluation, and Policy Development, свидетельствуют, что в условиях онлайн-обучения эффективность усвоения материала выше, чем при очном общении «лицом к лицу» [16].
Таким образом, накопленный опыт свидетельствует о явных преимуществах интерактивных моделей обучения с применением коротких онлайн-видеороликов перед традиционно принятыми и вселяет надежду на возможность повышения результативности изучения фармакологии в высшей медицинской школе.
Библиографическая ссылка
Никитина И.Л., Иванова О.А., Алёхин Е.К. ИЗУЧЕНИЕ ОБЩЕЙ ФАРМАКОЛОГИИ В ВЫСШЕЙ ШКОЛЕ: РОЛЬ АЛЬТЕРНАТИВНЫХ ТЕХНОЛОГИЙ // Современные проблемы науки и образования. – 2016. – № 3. ;URL: https://science-education.ru/ru/article/view?id=24649 (дата обращения: 11.09.2024).