Разработка средств парфюмерно-косметической и фармацевтической продукции упруго-вязко-пластичной консистенции затрагивает вопрос исследования структурно-механических свойств, которые оказывают влияние на потребительские показатели качества готовой продукции и собственно на технологический процесс производства [1, 3, 4, 8].
Предельное напряжение сдвига (ПНС) как одно из важнейших структурно-механических свойств дает возможность определять способность материалов (веществ) к пластическому течению и позволяет косвенно судить о степени его консистенции, что важно при проведении стадий технологического процесса сплавления основ, подаче полупродукта по трубопроводу к месту назначения и розлива в формы.
При разработке карандашей как парфюмерно-косметической продукции важным показателем является твердость продукта, что также подтверждается (определяется) изучением структурно-механических свойств, а конкретно — глубиной пенетрации.
Цель исследования
Изучение структурно-механических свойств разрабатываемых карандашей композитного состава для лечения воспалительных заболеваний губ и герпеса.
Материал и методы исследования
Для изучения деформационного поведения упруго-вязко-пластичных материалов при различных видах их нагружения и определения величины пенетрации использовали лабораторный реометрический информационно-измерительный комплексе (РИИК), который состоит из реометра (выполнен на базе конического пластометра КП-3); модуля сопряжения реометра (выполнен на базе серийного USB модуля KE-USB24R, KernelChip), а также персонального компьютера. Для управления работой РИИК использовано специальное программное обеспечение, разработанное и скомпилированное в среде Visual Basic 6.2, которое осуществляет сбор информации с потенциометрического датчика (через модуль сопряжения), ее сглаживание и фильтрацию, вычисление необходимых реологических показателей и их запись во внешний файл с возможностью экспорта результатов измерений и расчетов в редактор MS Excel с последующим сохранением и построением необходимых графических зависимостей [7]. Программное обеспечение имеет удобный интерфейс, систему информационных справок и подсказок, средства проверки информации, вводимой пользователем с клавиатуры (пример на рис. 1).
Для исследования взяты ранее разработанные модельные образцы карандашей композитного состава под номерами 1, 4, 5, 7, 10, 11, 14, 17, 18, 19, 26, 28 [2].
Рис. 1. Главное окно программы (скриншот)
Пенетрационные исследования модельных образцов карандашей проводили на РИИК коническим индентором (угол при вершине конуса α = 45°) при различных усилиях пенетрации (F = 2,133; 2,624; 3,605 и 4,586 H). Для этого испытуемый образец помещали на столик прибора, который фиксировали до момента соприкосновения с вершиной конуса, устанавливали стрелку индикатора на нулевую отметку и укладывали нагрузку, после чего осуществляли пуск погружения индентора в испытуемый образец и отмечали время и текущее значение глубины пенетрации.
По полученным результатам были рассчитаны значения предельного напряжения сдвига для исследуемых образцов по формуле:
, (1)
где Kα – константа конуса, зависящая от угла при его вершине; F — действие приложенного усилия пенетрации; hпр — предельное погружение конуса.
Результаты исследования и их обсуждение
В ходе пенетрационных испытаний определена глубина пенетрации для модельных образцов, результаты представлены в таблице. Наиболее предпочтительным значением данного показателя для средств в виде карандаша является интервал от 5 мм до 20 мм [6], следовательно, образцы карандашей под номерами 11, 14 и 28, имеют оптимальное значение, что характеризуется хорошей намазывающей способностью при применении.
Результаты определения глубины пенетрации
№ образца |
1 |
4 |
5 |
7 |
10 |
11 |
Глубина пенетрации, мм |
2,20 |
3,70 |
1,80 |
4,00 |
4,25 |
5,20 |
№ образца |
14 |
17 |
18 |
19 |
26 |
28 |
Глубина пенетрации, мм |
12,00 |
2,65 |
4,80 |
1,75 |
2,75 |
5,5 |
На основании полученных данных построены кривых кинетики погружения конуса (индентора) (рис. 2), а также определена графическая зависимость квадрата предельной глубины пенетрации от усилия пенетрации (рис. 3).
Рис. 2. Кривые кинетики погружения индентора в модельные образцы при максимальной нагрузке 4,586 Н
Рис. 3. Диаграмма зависимости предельной глубины пенетрации от усилия пенетрации для разных образцов
При анализе полученных диаграмм можно сделать вывод о том, что присутствие масла касторового или миндального, особенно ПЭО 400, в составе делает карандаш более пластичным и легко размазывающимся, в отличие от составов, в которых преобладает воск.
По формуле (1) были рассчитаны значения предельного напряжения сдвига для исследуемых образцов и произведено их ранжирование (рис. 4).
Рис. 4. Ранжирование модельных образцов карандашей
Известно, что чем меньше значение предельного напряжения сдвига, тем лучше намазывается образец [5], поэтому в ходе проведенных исследований установлено, что образцы карандашей под номерами 11, 14 и 28 являются оптимальными: легко наносятся на кожу, сохраняют при этом свою форму.
Заключение
В результате проведенных исследований по изучению структурно-механических свойств разрабатываемых карандашей композитного состава для лечения воспалительных заболеваний губ и герпеса установлено, что образцы под номерами 11, 14, 28 наиболее удобны в применении на основании проведенных пенетрационных испытаний.
Рецензенты:
Антипова Л.В., д.т.н., профессор, профессор кафедры технологии производств животного происхождения ФГБОУ ВПО «ВГУИТ», г. Воронеж;
Шахов С.В., д.т.н., профессор, профессор кафедры «Машины и аппараты пищевых производств» ФГБОУ ВПО «ВГУИТ», г. Воронеж.
Библиографическая ссылка
Веретенникова М.А., Степанова Э.Ф., Провоторова С.И., Смирных А.А. СТРУКТУРНО-МЕХАНИЧЕСКИЕ ИССЛЕДОВАНИЯ В РАЗРАБОТКЕ КАРАНДАШЕЙ // Современные проблемы науки и образования. – 2015. – № 4. ;URL: https://science-education.ru/ru/article/view?id=21279 (дата обращения: 11.09.2024).