Кроме широкого ассортимента акарицидов, существуют и различные препаративные формы и методы их применения. Борьба с иксодовыми клещами является актуальной, но нельзя ограничиваться только одним из методов в борьбе с клещами, необходимо проводить комплекс мероприятий, направленных на снижение численности иксодид, помня и о возможных экологических последствиях проводимых мероприятий [9].
При проведении отбора новых веществ приходится преодолевать противоречия, которые заключаются в необходимости достичь биоцидного эффекта при минимальном воздействии соединения на целевые объекты, среди которых имеются полезные насекомые, рыбы, птицы, млекопитающие [8, 10].
В настоящее время эффективным методом контроля численности кровососущих членистоногих - переносчиков возбудителей трансмиссивных болезней является применение аэрозолей инсектоакарицидов, полученных с помощью аэрозольных генераторов разных типов [1, 3].
Аэрозольные генераторы уже применяются в растениеводстве при опрыскивании и опыливании сельскохозяйственных растений пестицидами, для внекорневой подкормки, при искусственном дождевании, в ветеринарии - для защиты сельскохозяйственных животных и птицы от вредных насекомых и возбудителей многих болезней (аэрозольная вакцинация и терапия), для защиты растений, дезинфекции и дезинсекции закрытых помещений, защиты запасов сельскохозяйственной продукции при хранении, для борьбы с гнусом, комарами, саранчой, иксодовыми клещами и др. Перспективными направлениями при этом являются методика электрического заряжения частиц аэрозоля, создание «умных» аэрозолей, улучшение параметра монодисперсности [1, 3].
Химический способ защиты растений, животных будет оставаться актуальным и основным еще долгое время, пока ему на смену не придет генная биологическая инженерия. До этого момента этот способ будет продолжать совершенствоваться все в том же направлении, т.е. заключаться в снижении издержек и увеличении производительности опрыскивания [1].
Данный способ совершенствовался следующим образом: от высокообъемного опрыскивания к малообъемному и ультрамалообъемному опрыскиванию (УМО); ОТ наземного к авиационному способу и комбинации этих способов, далее - монодисперсные режимы опрыскивания.
В концепции развития этих решений является первостепенным не снижение объема раствора меньше ультрамалообъемного, а снижение размера частицы пестицидного раствора.
Аэрозольный генератор ГАРД (генератор аэрозольный регулируемой дисперсности) может работать в режимах высоко-, средне-, мало-, ультрамалообъемного опрыскивания, а также в режимах крупно-, средне-, мелкокапельного опрыскивания и аэрозолей с размером частицы от 3 до 50 мкм. При этом структура получаемого облака аэрозоля является монодисперсной, когда практически все частицы имеют одинаковый, заданный размер. Это инженерное решение позволяет одновременно достичь равномерности и проникновение пестицида, а также повысить показатели производительности опрыскивания за счет использования бесплатной энергии ветра, что ставит эту технологию по производительности не хуже авиационного способа, а по эффективности - в разы лучше. Основное преимущество аэрозольного генератора ГАРД перед другими существующими аппаратными решениями заключается в том, что рабочая жидкость дробится не механическим способом, приводящим к непрогнозируемым последствиям и результатам, делающим невозможным организованное включение в процесс управления, а посредствам сверхкритического перепада давления воздуха, разогнанного до сверхзвуковой скорости, и последующим дроблением в ультразвуковом излучении, возбуждаемом ультразвуковым генератором Гартмана. Последнее обстоятельство позволяет дробить жидкость на молекулярном уровне и дает возможность избежать хаотичности процессов, присущих макродроблению жидкостей [1, 2, 3].
Социальная значимость метода внесения пестицидов заключается в том, что существенно снижается экологическая нагрузка на природную систему, обеспечивая адресную и точно дозированную транспортировку яда до целевого объекта.
Важным являемся то обстоятельство, что при УМО отпадает необходимость в приготовлении рабочей жидкости на местах и связанной с этим транспортировке больших количеств воды. Вместо этого используют готовые жидкие пестицидные препараты фабричного производства. При использовании ГАРД в режиме УМО отсутствует необходимость в их заправке рабочими растворами непосредственно в поле, одной заправки в начале смены хватает на весь рабочий день. При этом минимизируются возможные ошибки, обусловленные неправильными расчетами, связанные с недостаточной квалификацией персонала, при подготовке рабочих растворов, а также возможные загрязнения пестицидами аппаратуры и т.д. [1].
При мелкокапельном ультрамалообъемном опрыскивании образуются капли меньшего размера. Мелкие капли более эффективны, поскольку они лучше проникают в кутикулу, а крупные капли (например, диаметром 400 мкм) содержат в 3-4 раза больше действующего вещества относительно необходимой летальной дозы. При разбиении крупной капли на капли с меньшим в 10 раз диаметром количество активных точек на обрабатываемой поверхности увеличивается в 1000 раз.
Более эффективным критерием в настоящее время считается размер капли пестицида от 1 до 5 мкм. Такие аэрозоли более эффективны, демонстрируют более высокую степень устойчивости оседания на растительности и замечательную проникающую способность, быстрое и адресное поражение, в том числе и через дыхательные пути вредителей сельскохозяйственных культур и переносчиков опасных трансмиссивных болезней. За счет малого размера частиц (а следовательно, и большей площади покрытия, хорошей устойчивости и проникающей способности) аэрозоль ГАРД соответственно менее подвержен негативному влиянию инсоляции ветра, дождя, перепадов температуры и влажности [4, 5].
Целью нашей работы явилось изучение эффективности инсектоакарицидных препаратов при обработке природных биотопов методом аэрозольного генератора ГАРД в природном очаге Крымской геморрагической лихорадки.
Материалы и методы исследования
Объектом исследования являлись имаго иксодовых клещей: Hyalomma marginatum marginatum Koch, 1844 (=H. plumbeum plumbeum (Panzer, 1795)); Dermacentor marginatus (Sulzer, 1776); D. reticulatus (Fabricius, 1794) (=D. pictus Hermann, 1894); Rhipicephalus rossicus Yakimov et Kohl-Yakimova, 1911.
Эти клещи предпочитают более открытые пространства (пастбища, лесополосы) и отличаются большей природной устойчивостью к акарицидам, чем клещи рода Ixodes, кроме того, имеют определенное эпидемиологическое значение на данной территории.
В качестве инсектоакарицидных средств нами использованы препараты отечественного производства, прошедшие процедуру государственной регистрации: «МЕДИЛИС-ципер», «Цифокс», «Юракс». Эти средства выбраны для испытаний установки как типичные представители концентратов эмульсий на основе циперметрина (25%). Средство «Таран» выбрано как представитель концентратов эмульсии на основе зетациперметрина (10%), средство «Форс-Сайт» - на основе соединения фентион (24%).
Аэрозольный генератор ГАРД является универсальной многооперационной установкой, сочетающей функции аэрозольного генератора и опрыскивателя. Диапазон дисперсности аэрозолей от 3 до 5 мкм при ультрамалообъемном опрыскивании, 50-150 мкм - при мелкокапельном, 150-300 мкм - при среднекапельном, 200-400 мкм - при крупнокапельном опрыскивании, с плавной или ступенчатой регулировкой капель рабочей жидкости. Рабочая скорость мобильного генератора 5-15 км/ч, транспортная скорость до 90 км/ч.
Результаты исследования и выводы
Опытные обработки проведены на площади около 1000 га. Контрольные и опытные учеты клещей осуществляли по общепринятым методикам [4, 5, 6, 7].
Рабочие эмульсии готовили непосредственно перед применением. Норма расхода средств для клещей H. marginatum составила «Форс-Сайт» 4-4,5 л/га, для препаратов «МЕДИЛИС-ципер», «Цифокс», «Юракс», «Таран» - 1,5 л/га. Для клещей р. Dermacentor Rhipicephalus - «Форс-Сайт» 3-3,75 л/га, для препаратов «МЕДИЛИС-ципер», «Цифокс», «Юракс», «Таран» - 1,0-1,25 л/га (таблица). Расход рабочей жидкости составил 10 л/га.
Акарицидные обработки проводили ранней весной (в марте, апреле) в позднее вечернее время, при температуре воздуха 20-24°С, скорости ветра 1-4 м/с. Использовали режим работы ГАРД для мелкокапельного опрыскивания. Дисперсность составляла 50-150 мкм при расходе рабочей жидкости 10 л/га. Работы осуществлялись с учетом перемещения аэрозольного облака ветром поперек обрабатываемого пастбища. Автомобиль с установкой ГАРД двигался таким способом, чтобы ветер сносил облако на территорию, подлежащую обработке.
Таблица
Нормы расхода средств для борьбы с иксодовыми клещами
№ п/п |
Наименование препарата |
Действующее вещество |
Вид клещей |
|
D. reticulatus D. marginatus R. rossicus |
H. marginatum |
|||
Количество препарата на 1 га, (л) |
||||
1 |
«Форс-Сайт 25% к.э.» |
фентион |
3-3,75* |
4-4,5* |
2 |
«Таран 10% в. к. э» |
зетациперметрин |
1-1,25* |
1,5 |
3 |
«Цифокс 25% в. к. э» |
циперметрин |
1-1,25* |
1,5 |
4 |
«МЕДИЛИС-ципер» |
циперметрин |
1-1,25* |
1,5 |
5 |
«Юракс», |
циперметрин |
1-1,25* |
1,5 |
Примечание: * - при густом растительном покрове
Учеты иксодовых клещей, проведенные через 3 и 5 суток, показали их отсутствие на обработанной территории, а акарицидное действие сохранялось от 14 до 30 суток.
При контроле эффективности качества акарицидных обработок нами установлено, что тип используемой техники удовлетворяет основным требованиям борьбы с иксодовыми клещами. В условиях производственных обработок территорий акарицидами возможность заноса клещей сократилась в 2-3 раза. При контроле качества акарицидных обработок природных биотопов (пастбищ) показатели остаточной численности клещей не превышали 1-2 экземпляра на единицу учета в период пика активности, а иногда они равнялись нулю.
Таким образом, применение аэрозольного генератора обеспечило высокую эффективность противоэпидемических, противоэпизоотических мероприятий и позволяет оперативно проводить широкомасштабные и локальные акарицидные обработки территорий в целях защиты населения и сельскохозяйственных животных от нападения кровососущих членистоногих.
Рецензенты:
Колесников В.И., д.в.н., профессор, заведующий лабораторией инфекционных, незаразных и паразитарных болезней ФГБНУ «Всероссийский научно-исследовательский институт овцеводства и козоводства» г. Ставрополь;
Оробец В.А., д.в.н., профессор, заведующий кафедрой терапии и фармакологии ФГБОУ ВПО «Ставропольский ГАУ» г. СтавропольБиблиографическая ссылка
Тохов Ю.М., Логвинов А.Н., Чумакова И.В., Дылев А.А., Луцук С.Н. СОВРЕМЕННЫЕ ПОДХОДЫ РЕГУЛЯЦИИ ЧИСЛЕННОСТИ КРОВОСОСУЩИХ ЧЛЕНИСТОНОГИХ // Современные проблемы науки и образования. – 2015. – № 4. ;URL: https://science-education.ru/ru/article/view?id=21243 (дата обращения: 04.12.2024).