Создание минеральношлаковых композиционных вяжущих на основе использования дисперсных горных пород осадочного и вулканического происхождения: известняка, доломита, глины, молотого гравия, кремнеземистых и глауконитовых песчаников, базальта, диабаза, гранита, дацита, сиенита, диорита, способных отвердевать в смеси со шлаком и 2-3 % щелочи, извести и соды, щелочных растворимых солей в прессованном состоянии с формированием в нормальных условиях достаточной прочности принадлежит кафедре технологии бетонов, керамики и вяжущих (ныне кафедра технологии строительных материалов и деревообработки) Пензенского государственного университета архитектуры и строительства (ПГУАС). Преимущество таких материалов состоит в том, что они являются малощелочными, в отличие от шлакощелочных вяжущих и бетонов на их основе. Кафедра технологии бетонов, керамики и вяжущих опираясь на работы В.Д. Глуховского и его школы, других ученых-исследователей по шлакощелочным вяжущим является родоначальником глиношлаковых, карбонатношлаковых, гравелитошлаковых, дацитошлаковых, силицитошлаковых, геошлаковых, геосинтетических вяжущих и композиционных материалов на их основе. За годы исследований сотрудниками кафедры опубликованы более 300 работ, начиная с 1993 года [1,2,3,4,5,6,7,9].
Новыми материалами, разработанными на кафедре технологии бетонов, керамики и вяжущих за последние годы, стали геошлаковые и геосинтетические вяжущие [1,2,3,4,5,6,7,9], в которых доля шлака в композиционном вяжущем была снижена с 50-60 % до 10-20 %, а доля минеральных порошков с различным химико-минералогическим составом доведена до 80-90 %. Содержание щелочных активизаторов было снижено до 2 % NaOH, а растворимых солей, образующих NaOH за счет каустификации до 3-5 %. Геошлаковые и геосинтетические (геополимерные) вяжущие [1,2,3,4,5,6,7,9], активизируются термохимическим методом. Это некоторые горные породы, формирующие высокую прочность с добавкой щелочи NaOH или соды, а также каустифицируемыми в теле композита солями регенерирующими щелочь NaOH и KOH.
При изготовлении стеновых камней на основе карбонатношлаковых вяжущих методом силового прессования или вибропрессования, возможно использовать, как показано ранее [8], щелочной активизатор NaOH или смешанный активизатор - соду Na2CO3 и гидратную известь. Однако, в зависимости от вида используемого молотого гранулированного шлака, прочностная эффективность этих видов активизаторов может быть различной. Считается, что щелочь при высокой молярности раствора, более эффективна в качестве активизатора твердения шлаков. Нами установлено, что щелочь может отверждать некоторые молотые горные породы за счет синтеза цементирующих новообразований. Такие вяжущие названы нами геосинтетическими [1,2,3,4,5,6,7,9]. Сода в индивидуальном виде не в состоянии отверждать горные породы. Не отверждаются содой и некоторые очень кислые шлаки, практически не содержащие в химическом составе СаО. Комбинация соды и извести в оптимальном соотношении является эффективным активизатором твердения шлаков, минерально- и геошлаковых композиций, и даже отдельных горных пород, т.е. геосинтетических вяжущих.
Как известно, реакция каустификации соды известью протекает по следующей реакции: Na2CO3+Ca(OH)2 = 2NaOH + CaCO3
При этом 1% соды выделяет 0,75% щелочи. Эта реакция в растворе протекает достаточно быстро, но в жидкой фазе шлаковых и геошлаковых вяжущих замедляется. Скорость ее зависит от водотвердого отношения в бетонной смеси. Выделяющаяся щелочь активизирует твердение шлака, а побочный молекулярно-дисперсный кальцит является балластом и пополняет карбонат кальция, вводимый с карбонатношлаковым вяжущим. Он понижает прочность горных пород и шлаковых вяжущих по сравнению с прочностью их при использовании щелочи, особенно, в первые сроки твердения. В карбонатношлаковых вяжущих (КШВ) негативное действие нетвердеющего CaCO3 снижается. Это объясняется тем, что образующийся кальцит синтактически нарастает на родственные ему частицы карбонатного наполнителя. С другой стороны, кальцит является «рекордсменом» по количеству габитусов кристаллов (несколько тысяч) и на него эпитаксиально нарастают инородные продукты гидратации шлака.
Задача исследований заключалась в оценке активности шлаков, карбонатношлаковых вяжущих (КШВ) и бетонов на их основе, активизируемых щелочью NaOH и содо-известковой смесью. Для оценки активности щелочных активизаторов использовали молотый Магнитогорский (Sуд=390м2/кг) и Новотроицкий (Sуд=510м2/кг) шлаки, в смесях с известняковой мукой Ивантеевского карьера, Саратовской области. Новотроицкий шлак содержал примеси металла и имел повышенную плотность. Его, возможно, было использовать для защиты от радиационных излучений при введении тяжелого песка и щебня. Удельная поверхность известняковой муки составляла 560м2/кг. Известняковую муку, шлак, соду и известь-пушонку однородно смешивали в шаровой мельнице с малым количеством шаров. В этом случае, полученную сухую смесь композиционного активизированного вяжущего можно хранить, транспортировать как готовое вяжущее, а при использовании для производства растворов и бетонов просто затворять водой. Соотношение между содой и известью варьировали, но во всех случаях принимали избыток извести по сравнению со стехиометрической реакцией для возможной известковой активизации шлака для образования гидросиликатов кальция. Карбонатношлаковое вяжущее (КШВ) состояло из 60% шлака и 40% известняковой муки. При использовании щелочного активизатора карбонатношлаковое вяжущее затворяли раствором щелочи, исходя из 2%-ого содержания NaOH на сухое вещество вяжущего, а при использовании содо-известкового активизатора - водой. Водовяжущее отношение составляло 0,12-0,17. Образцы-цилиндры диаметром и высотой 25 мм прессовали при давлении 25 МПа. Они твердели в одинаковых условиях, над водой при температуре 18-22ºС. Результаты кинетики формирования прочности карбонатношлакового вяжущего (КШВ) представлены в табл. 1.
Таблица 1
Кинетика формирования прочности карбонатношлакового вяжущего
№ п/п
|
Наименование состава |
В/Т |
Плотность кг/м3 |
Прочность при сжатии, Rсж., МПа, через суток |
||||
3 |
7 |
28 |
80 |
420 |
||||
1 |
Шлак Новотроицкий+2% NaOH на сухое вещество |
0,12 |
2707 |
33,7 |
34,3 |
37,0 |
65,3 |
91,8 |
2 |
КШВ на Новотроицком шлаке с 2,8% соды и 3,7% извести в составе смеси |
0,14 |
2435 |
13,9 |
16,5 |
28,0 |
32,4 |
100,8 |
3 |
Шлак Магнитогорский +2% NaOH на сухое вещество |
0,17 |
2047 |
22,0 |
33,0 |
41,5 |
54,8 |
113,5 |
4 |
КШВ на Магнитогорском шлаке с 2,8% соды и 3,7% извести в составе смеси |
0,14 |
2102 |
21,2 |
43,1 |
46,5 |
60,0 |
114,3 |
Как следует из табл. 1, Новотроицкий шлак, затворенный водой с 2% щелочи NaOH, обладает высокой скоростью набора прочности при сжатии, достигающей на 28 сутки твердения 37 МПа. Через 420 суток прочность при сжатии его превышает 28-суточную в 2,5 раза. Высокая плотность образцов объясняется наличием тонкодисперсного металла. Прочность через 28 суток КШВ на Новотроицком шлаке с содо-известковым активизатором снижается в 1,3 раза, по сравнению с Новотроицким шлаком, затворенным водой с 2 % щелочи NaOH, как и кинетика набора ее в начальный период твердения. Однако, в более поздний период твердения прочностные показатели его превышают прочности шлака со щелочью. Это, очевидно, связано с наличием извести на образование гидросиликатов кальция.
Более активным в смешанном вяжущем является Магнитогорский шлак. Карбонатношлаковое вяжущее на нем более интенсивно твердеет по сравнению с КШВ на Новотроицком шлаке, при использовании как щелочного, так и содо-известкового активизатора. На 28 сутки прочность при сжатии КШВ на Магнитогорском шлаке с содо-известковым активизатором в 1,7 раза выше, чем у КШВ на Новотроицком шлаке. Через 420 суток прочность при сжатии Магнитогорского шлака с 2 % щелочи NaOH (состав 3) увеличивается в 2,8 раза, а КШВ на Магнитогорском шлаке с содо-известковым активизатором (состав 4) - в 2,5 раза, по сравнению с 28-ми суточной. Это - важный фактор проявления конструктивных процессов, протекающих при длительном твердении минеральношлаковых вяжущих. В этом проявляется существенное преимущество таких вяжущих по сравнению с цементом. Цементный камень набирает высокую 28-суточную прочность во влажных условиях (до 80-100 МПа), однако годовой прирост прочности не превышает 30-50%.
Прессованные вяжущие из молотых гранулированных шлаков не поддаются жидкостекольной активации при малых дозировках жидкого стекла (2-3 %). Так, Нижнетагильский гранулированный шлак даже при высокой удельной поверхности (680м2/кг) при В/Т=0,25 схватывается и не твердеет с значительной добавкой товарного жидкого стекла (8-17 %) в течении 7-10 суток, но через 28 суток имеет прочность 40-50 МПа. В свою очередь активизация этого шлака с содоизвестковым активизатором (сода - 6%, известь - 9%) способствовала формированию прочности при сжатии на 1 сутки до 18 МПа, а через 28 суток она достигла 62 МПа. Поэтому были изготовлены бетоны состава 1:2:2 и 1:2:1,5 (КШВ в смесях с известняковой мукой:песок:щебень) на Нижнетагильском шлаке с различным содержанием содо-известкового активизатора. Вибропрессование образцов-кубов с гранью 50 мм осуществлялось при прессующем давлении 0,09 МПа. Составы бетонов и кинетика нарастания прочности представлена в табл. 2.
Таблица 2
Кинетика твердения вибропрессованных щебеночных бетонов на композиционном, карбонатношлаковом вяжущем и их физико-технические свойства
№ |
Наименование состава |
Количество по массе, кг |
В/В |
Плотность кг/м3 |
Прочность при сжатии, Rсж, МПа, через суток |
||||
1 |
3 |
7 |
28 |
150 |
|||||
1 |
В:П:Щ:В=1:2:2:0,37 КШВ с 5,2% соды и 7,8% извести Песок Сурский с Мкр=1,5 Щебень известняковый фр.5-10мм Вода Влажность смеси - 7,4% |
430 860 860 159 |
0,37 |
2252 |
4,6 |
9,2 |
14,6 |
23,0 |
33,2 |
2 |
В:П:Щ:В=1:2:1,5:0,34 КШВ с 5,2% соды и 7,8% извести Песок Сурский с Мкр=1,5 Щебень известняковый фр.5-10мм Вода Влажность смеси - 7,4% |
486 972 729 165
|
0,34 |
2322 |
11,0 |
30,8 |
- |
57,5 |
- |
3 |
В:П:Щ:В=1:2:1,5:0,34 КШВ с 2,6% соды и 3,9% извести Песок Сурский с Мкр=1,5 Щебень известняковый фр.5-10мм Вода Влажность смеси - 7,4 % |
486 972 729 165
|
0,34 |
2243 |
3,0 |
9,4 |
- |
26,8 |
- |
4 |
В:П:Щ:В=1:2:1,5:0,34 КШВ с 4,0% соды и 6,0% извести Песок Сурский с Мкр=1,5 Щебень известняковый фр.5-10мм Вода Влажность смеси - 7,4% |
486 972 729 165
|
0,34 |
2300 |
6,2 |
14,7 |
- |
31,1 |
42,4 |
Использование минеральношлаковых вяжущих в вибропрессованных бетонов для производства стеновых пустотных блоков, тротуарной брусчатки, поребрика и других мелкоштучных изделий может быть экономически оправдано по сравнению с цементными изделиями.
Как следует из табл. 2, прочностные показатели зависят не только от количества активизатора, но и от содержания вяжущего и заполнителей в бетоне. При уменьшении содержания щебня с 860 до 729 кг плотность при одинаковом расходе воды возрастает на 70 кг/м3, а прочность увеличивается более чем в 2 раза и достигает 57 МПа. С уменьшением содержания соды до 2,6% и извести до 3,9% прочность вновь падает в 2 раза. При средних расходах соды - 4% и извести - 6% (состав 4) прочностные показатели повышаются лишь на 14%, по сравнению с составом 3. Поэтому в зависимости от требуемой марки бетона необходимо корректировать содержание компонентов в смеси. Так, при изготовлении стеновых пустотных блоков с прочностью15-20 МПа можно добавлять малые расходы соды и извести. Для тротуарной плитки и других мелкоштучных изделий наиболее приемлем состав 2, с маркой бетона М400-М450. Морозостойкость такого бетона превышает 200 циклов. Использование карбонатношлаковых вяжущих (КШВ) также возможно при изготовлении изделий из вибрационно-уплотняемых бетонов при применении тех шлаков, которые плохо активизируются силикатами натрия в малообводненных составах.
В табл. 3 приведены состав бетонной смеси с использованием КШВ на Нижнетагильском шлаке жесткостью Ж-1 с добавкой ЛСТ в количестве 0,3% от массы вяжущего с водовяжущим отношением В/В=0,47.
Таблица 3
Кинетика твердения виброуплотненных щебеночных бетонов на композиционном, карбонатношлаковом вяжущем
№ п/п |
Наименование состава |
Количество по массе, кг |
В/В |
Плотность кг/м3 |
Прочность при сжатии, Rсж, МПа, через суток |
|||
1 |
3 |
7 |
28 |
|||||
1 |
В:П:Щ:В=1:2:1,5:0,45 КШВ с 5,2% соды и 7,8 % извести Песок Сурский с Мкр=1,5 Щебень известняковый фр.5-10мм Вода+ЛСТ (0,3% от массы вяжущего) Влажность смеси - 10% |
400 950 800 190 |
0,47 |
2255 |
3,6 |
6,0 |
- |
32,0 |
Как следует из табл. 3, использование содо-известкового активизатора позволяет получить бетоны марок 250 по вибрационной технологии уплотнения, что существенно расширяет возможности применения минерально-шлаковых вяжущих, с учетом распространения в России зарубежных линий вибропрессования. Однако прочность в начальные сроки твердения формируется медленно и требует термической активации.
Установлено, что при тепловой обработке образцов существенно интенсифицируются процессы твердения с повышением прочности после пропаривания. Это связано с известными представлениями о высокой активности шлаков и зол-уноса при водотепловой обработке. Таким образом, при использовании содо-известковой активации достигают следующие преимущества:
1. Возможно изготавливать сухие строительные смеси композиционного вяжущего на специализированном предприятии и отправлять их на заводы стройиндустрии.
2. Для получения каменной муки можно использовать дешевые отсевы камнедробления, которых накопились в России более 6 млрд. тонн на предприятиях нерудной промыщленности.
3. Возможно использовать каменную муку для асфальтобетонных смесей, а также карбонатную муку для подщелачивания почв, но с более высокой дисперсностью, равной 300-400 м2/кг и более.
4. Для изготовления минеральношлакового вяжущего возможно использовать молотые смеси гранулированных и отвальных шлаков в равном соотношении без потери качества.
Рецензенты:
Ерофеев В.Т., д.т.н., профессор, заведующий кафедрой «Строительные материалы и технологии», федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Мордовский государственный университет им. Н.П. Огарёва», г. Саранск;
Макридин Н.И., д.т.н. профессор кафедры технологии строительных материалов и деревообработки федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Пензенский государственный университет архитектуры и строительства», г. Пенза.
Библиографическая ссылка
Калашников В.И., Махамбетова К.Н., Петухов А.В. ИССЛЕДОВАНИЕ ПРОЧНОСТНЫХ СВОЙСТВ ВИБРОПРЕССОВАННЫХ И ВИБРОУПЛОТНЕННЫХ БЕТОНОВ НА КОМПОЗИЦИОННОМ КАРБОНАТНОШЛАКОВОМ ВЯЖУЩЕМ // Современные проблемы науки и образования. – 2015. – № 1-1. ;URL: https://science-education.ru/ru/article/view?id=18560 (дата обращения: 06.10.2024).