Сетевое издание
Современные проблемы науки и образования
ISSN 2070-7428
"Перечень" ВАК
ИФ РИНЦ = 1,006

ИССЛЕДОВАНИЕ АДСОРБЦИИ КОМПОНЕНТОВ ПОРООБРАЗУЮЩЕЙ ДОБАВКИ НА ПОВЕРХНОСТИ МИНЕРАЛЬНЫХ ЧАСТИЦ СЫРЬЕВОЙ СМЕСИ ЯЧЕИСТОГО МАТЕРИАЛА

Самошина Е.Н. 1 Самошин А.П. 1 Базин В.В. 1 Жуков А.В. 1
1 ГОУ ВПО «Пензенский государственный университет архитектуры и строительства»
Использование метода сухой минерализации пены при изготовлении пенокерамобетона определяет важность исследования процессов, происходящих в пене при ее наполнении минеральными частицами твердой фазы (ШПЦ, опокой, диатомитом, глиной). С целью исследования процессов, происходящих в пене при ее наполнении, изучена адсорбция пенообразователя, пластификатора и стабилизатора на поверхности минеральных компонентов сырьевой смеси ячеистого материала (ШПЦ, опоке, диатомите, глине). Выявлено, что в присутствии пластификатора и стабилизатора наблюдается увеличение концентрации пенообразователя в растворе, что можно объяснить преимущественной по сравнению с пенообразователем адсорбцией стабилизатора и пластификатора на поверхности минеральных компонентов сырьевой смеси. Это позволило уменьшить количество вводимого пенообразователя для получения пенокерамобетона требуемой плотности и снизить его негативное влияние на прочность материала.
адсорбция
пенообразователь
пластификатор
стабилизатор
пенокерамобетон
1. Батраков В.Г. Модифицированные бетоны [Текст] / В.Г. Батраков. – М.: Стройиздат, 1990. – 400 с.
2. Горшков В.С. Вяжущие, керамика и стеклокристаллические материалы. Структура и свойства [Текст] / В.С. Горшков и др. – М.: Стройиздат, 1995, 584 с.
3. Гузман И.Я. Некоторые принципы образования пористых керамических структур. Свойства и применение [Текст] / И.Я. Гузман // Стекло и керамика, 2003. – № 9. – С. 28–31.
4. Дятлова Е.М. Тугоплавкие теплоизоляционные материалы, полученные способами пено- и газообразования [Текст] / Е.М. Дятлова, С.А. Гайлевич, Г.Я. Миненкова, С.Л. Радченко // Стекло и керамика, 2002. – № 2. – С. 20–23.
5. Езерский В.А. Поризованная стеновая керамика – преимущества и недостатки технологии [Текст] / В.А. Езерский, Д.В. Кролевецкий, Г.И. Горбунов // Строительные материалы, оборудование, технологии XXI века, 2006. – № 4. – С. 42–44.
6. Кравченко И.И. Труды 2-ого Всесоюзного совещания по применению поверхностно-активных веществ в нефтяной промышленности [Текст] / И.И. Кравченко и др. ГОСТО и техиздат, 1963. – С. 160.
7. Мартыненко В.А. О взаимосвязи технологических параметров в методах приготовления пенобетонной смеси [Текст] / В.А. Мартыненко // Вестник БГТУ, 2003. – №4. – С. 118–122.
8. Писаренко А.П. Курс коллоидной химии [Текст] / А.П. Писаренко, К.А. Поспелова, А.Г. Яковлев.  М.: «Высшая школа», 1969.  248 с.

Особенное значение при разработке составов ячеистых материалов имеет выбор способа поризации раствора. По результатам анализа опубликованных работ [3, 4, 5, 7], посвященных вопросам технологии пенобетонных материалов, для изготовления пенокерамобетона был выбран метод сухой минерализации пены. Сущность данного метода заключается в предварительном приготовлении пены и ее минерализации сухими компонентами путем постепенного их введения в приготовляемую пеномассу при одновременном перемешивании в высокоскоростном смесителе. По сравнению с другими технологиями изготовления этот метод позволяет получить более плотные межпоровые перегородки ячеистого материала за счет снижения водотвердого отношения.

В связи с особенностью выбранного нами способа формирования ячеистой структуры материала принципиально важно исследовать процессы, происходящие в пене при ее наполнении минеральными частицами твердой фазы.

Нами было исследовано влияние вида минеральной составляющей ячеистого материала на процессы адсорбции, сопровождающие минерализацию пены при ее наполнении твердыми компонентами. Адсорбцию пенообразователей ПБ-2000, ПО-6ТС и, для сравнения, воздухововлекающей добавки СДО на поверхности твердых адсорбентов определяли на модельных системах по изменению поверхностного натяжения водных растворов.

Принимая во внимание, что используемые пенообразователи, кроме основного пенообразующего вещества, содержат определенное количество различных функциональных добавок, для практической оценки адсорбционной способности мы использовали величину «кажущейся» адсорбции [6].

Данные таблицы 1 и рисунка 1 характеризуют адсорбцию пенообразователей из 0,5%-ного водного раствора на поверхности минеральных частиц твердой фазы при В/Т=25:1.

Таблица 1

Адсорбция пенообразователей на поверхности минеральных частиц  

Наименование

материала

 

Адсорбция пенообразователей на поверхности

минеральных частиц (в пересчете на сухое вещество)

ПБ-2000

ПО-6ТС

СДО

А, мг/г

А•104 мг/см2

А, мг/г

А•104

мг/см2

А, мг/г

А•104

мг/см2

Диатомит

4,71

2,41

5,09

2,61

9,12

4,67

ШПЦ

10,66

30,45

7,23

20,65

9,12

26,05

Глина

лягушевская

16,16

26,13

7,32

11,83

22,68

36,67

Глина

иссинская

13,68

19,86

7,01

10,17

21,42

31,09

Опока

3,02

2,99

3,15

3,12

4,03

4,00

Как следует из данных таблицы 1, диатомит и опока характеризуются относительно невысокой сорбирующей способностью исследуемых пенообразователей в сравнении с глиной и ШПЦ. Величина адсорбции на поверхности опоки и диатомита приблизительно равна при использовании пенообразователей ПБ-2000 и ПО-6ТС и увеличивается при использовании воздухововлекающей добавки СДО. Так, например, адсорбция ПБ-2000 на поверхности опоки составляет 2,99 •х 10-4 мг/см2, на поверхности диатомита – 2,41 х 10-4 мг/см2, на поверхности ШПЦ – 30,45 х 10-4 мг/см2. В случае использования СДО адсорбция на опоке составляет 4,00 х 10-4 мг/см2, на диатомите – 4,6 х10-4 мг/см2, на ШПЦ – 26,05 х10-4 мг/см2. При использовании глины наименьшая величина адсорбции наблюдается из раствора ПО-6ТС, а наибольшая – из раствора СДО.

Различие в значениях адсорбции пенообразователей на поверхности твердых адсорбентов, объясняется, по-видимому, различной гидравлической активностью минеральных наполнителей. По данным В.Г. Батракова, который исследовал адсорбцию пластифицирующих ПАВ, увеличение гидравлической активности минеральных добавок приводит к снижению их адсорбционной способности [1].

Рис. 1. Адсорбция пенообразователей на поверхности минеральных частиц

Исследования гидравлической активности используемых минеральных наполнителей подтвердили правильность данных выводов. Гидравлическую активность опоки, диатомита и глины определяли по методике, описанной в работе [2]. Результаты экспериментов показали, что гидравлическая активность опоки составляет 320 мг/г, диатомита – 355 мг/г и глины лягушевской – 175 мг/г.

Кроме того, различие в величинах адсорбции на исследованных наполнителях во многом определяется знаком электрического заряда поверхности наполнителя (табл. 2). Экспериментальное определение знака электрического заряда поверхности минеральных частиц было проведено по методике Рейсса [8].

Таблица 2

Знак заряда поверхности частиц

№ п/п

Название компонента

Знак заряда поверхности

1

Опока

Отрицательный

2

Диатомит

Отрицательный

3

Глина лягушевская

Отрицательный

При взаимодействии молекул пенообразователя с поверхностью частиц ШПЦ возможно также протекание процесса хемосорбции, который увеличивает величину кажущейся адсорбции. Из исследованных в работе пенообразователей наибольшее значение адсорбции на частицах ШПЦ получено для растворов, содержащих ПБ-2000.

Расчеты показали, что если адсорбентом является опока или диатомит, то образуется мономолекулярный адсорбционный слой пенообразователя, если адсорбентом является глина или ШПЦ – полимолекулярный. Число адсорбционных слоев пенообразователя на поверхности адсорбента определяли по формуле [8]:

1000, (1)

где – число Авогадро; А – адсорбция, мг/г; М – молекулярная масса поверхностно-активного вещества, г/моль; – удельная поверхность адсорбента, см2/г; – площадь поверхности адсорбента, занимаемая одной молекулой ПАВ при адсорбции, см2.

Проведенные исследования показывают, что основные минеральные компоненты пенокерамобетона в разной степени способны адсорбировать молекулы пенообразователя. В результате на поверхности частиц формируется адсорбционный слой, препятствующий образованию прочных коагуляционных и кристаллизационных контактов при твердении материала.

По нашему мнению, уменьшить негативное воздействие пенообразователя на процессы структурообразования минеральной части пенокерамобетона можно путем дополнительного введения в состав материала пластифицирующих добавок.

Было проведено исследование адсорбции пластификатора С-3 на поверхности минеральных компонентов сырьевой смеси при В/Т=10:1. Адсорбцию С-3 на твердых адсорбентах определяли фотоколориметрическим методом по изменению окраски водных растворов. Начальная концентрация раствора С-3 составляла 1,2%. Результаты экспериментов приведены в таблице 3.

Таблица 3

Адсорбция пластификатора на поверхности минеральных компонентов сырьевой смеси

Соотношение

ШПЦ:Опока

по массе

Адсорбция пластификатора (в пересчете на сухое вещество)

А, мг/г

А х 10 3, мг/см2

1:5,7

33,4

2,5

1:2,3

24,5

2,1

1:1

17,1

1,8

Как следует из таблицы 3, поверхность минеральных компонентов (ШПЦ и опоки) обладает адсорбирующей способностью по отношению к пластификатору С-3. Из таблицы 3 следует также, что увеличение относительного содержания опоки в смеси с 50 до 85% приводит к значительному росту адсорбции С-3. По нашему мнению, причина такой зависимости заключается в том, что в системе, состоящей из цемента, опоки и воды, увеличение содержания активной гидравлической добавки в виде опочного наполнителя приведет в процессе гидравлического твердения к накоплению тонкодисперсных низкоосновных гидросиликатов типа CSH (B), которые обладают повышенной адсорбционной способностью [1].

Исследование совместного влияния пенообразователя, стабилизатора и пластификатора на факторы, во многом определяющие параметры формирования начальной структуры ПКБ, было проведено путем измерения поверхностного натяжения водных растворов и вытяжек, содержащих ПБ-2000. Экспериментальные данные, характеризующие индивидуальное и совместное влияние добавок ПБ-2000, С-3 и ПАА на поверхностное натяжение растворов, приведены в таблице 4.

Таблица 4

Поверхностное натяжение водных растворов

№ п/п

 

Содержание, %

Поверхностное

натяжение, мН/м

1

Вода дистиллированная

72,0

2

ПБ-2000

0,3

28,2

3

С-3

0,5

71,0

4

ПБ-2000

С-3

0,3

0,5

 

30,1

5

ПБ-2000

опока

0,3

10

 

33,3

6

ПБ-2000

С-3

опока

0,3

0,5

10

 

30,2

7

ПБ-2000

ШПЦ

0,3

10

 

45,6

8

ПБ-2000

С-3

ШПЦ

0,3

0,5

10

 

39,1

9

ПБ-2000

ПАА

ШПЦ

0,3

0,25

10

 

39,8

10

ПБ-2000

С-3

ПАА

ШПЦ

0,3

0,5

0,25

10

38,5

 

Анализ данных таблицы 4 позволяет сделать соответствующие выводы.

1) активность пластификатора С-3 на границе «поверхность раствора – воздух» незначительна (состав №3);

2) добавка пластификатора приводит к некоторому снижению поверхностного натяжения водных растворов, содержащих пенообразователь и опочный наполнитель (состав №6 по сравнению с составом № 5). Наблюдаемое снижение поверхностного натяжения растворов объясняется преимущественной адсорбцией молекул С-3 на поверхности опочного наполнителя, что способствует увеличению концентрации пенообразователя в растворе;

3) положительное влияние добавки С-3 на снижение поверхностного натяжения водного раствора, содержащего наполнитель и пенообразователь, усиливается при использовании ШПЦ вместо опоки (составы № 7 и № 8 по сравнению с составами № 5 и № 6);

4) добавка стабилизатора ПАА также снижает поверхностное натяжение водного раствора, содержащего пенообразователь и ШПЦ (состав № 9 по сравнению с составом № 7).

Полученные экспериментальные данные указывают на преимущественную адсорбцию С-3 и ПАА на поверхности минеральных частиц по сравнению с пенообразователем ПБ-2000. Это подтверждает высказанное нами ранее предположение о целесообразности введения С-3 и ПАА в состав комплексной порообразующей добавки. Применение С-3 и ПАА позволит существенно улучшить основные свойства материала как на этапе получения пенокерамобетонной смеси, так и на этапе гидратационного твердения.

Рецензенты:

Логанина В.И., д.т.н., профессор, заведующая кафедрой «Управление качеством и технологии строительного производства» Пензенского Государственного университета архитектуры и строительства, г. Пенза;

Калашников В.И., д.т.н., профессор, заведующий кафедрой «Технология строительных материалов и деревообработки» Пензенского Государственного университета архитектуры и строительства, г. Пенза.


Библиографическая ссылка

Самошина Е.Н., Самошин А.П., Базин В.В., Жуков А.В. ИССЛЕДОВАНИЕ АДСОРБЦИИ КОМПОНЕНТОВ ПОРООБРАЗУЮЩЕЙ ДОБАВКИ НА ПОВЕРХНОСТИ МИНЕРАЛЬНЫХ ЧАСТИЦ СЫРЬЕВОЙ СМЕСИ ЯЧЕИСТОГО МАТЕРИАЛА // Современные проблемы науки и образования. – 2015. – № 1-1. ;
URL: https://science-education.ru/ru/article/view?id=18269 (дата обращения: 03.10.2024).

Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»
(Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления)

«Фундаментальные исследования» список ВАК ИФ РИНЦ = 1,674