Среди известных на данный момент аналогов фармацевтического желатина широко применяют анионные полисахариды как природного (пектин, каррагинан, крахмал), так и искусственного (окисленный крахмал) происхождения [1]. За рубежом большое распространение получили альгинаты, производные целлюлозы, карбоксиметилцеллюлоза (КМЦ), а также различные камеди [2].
Одним из классических растительных аналогов желатина является крахмал, который уже значительное время широко применяют в пищевой промышленности [3; 4]. К одним из перспективных растительных аналогов желатина можно отнести различного рода пектины. В настоящее время они используются в пищевой и фармацевтической промышленности. Пектины способны образовывать гелеобразные системы, характеризующиеся специфическим набором физико-химических свойств. К тому же было установлено, что пектин оказывает благоприятное действие на организм человека, а ресурсы для производства пектина практически неограниченны [5; 6].
Объекты и методы исследований
Объектом исследований являлся растительный аналог фармацевтического желатина: пектин АРА 105.
Проводили анализ состава и свойств растительного аналога фармацевтического желатина. В качестве исследуемых характеристик выбраны: насыпная плотность, вязкость, доля нерастворимого остатка, содержание микропустот, удельный объем, удельная поверхность, характерный диаметр. По микрофотографиям оценивали динамику изменения структуры при взаимодействии с растворителем [7]. По результатам анализа спектрофотометрического профиля оценивали массовую долю химических элементов (кислорода, азота, углерода, натрия, хлора).
Для исследования состава растительного аналога фармацевтического желатина использовали анализирующую станцию JEOL JED-2300, с помощью которой методом рентгеноспектрального микроанализа получали спектрометрические профили, позволяющие определить химический состав растительных аналогов фармацевтического желатина [8].
Способность к формированию ГДС (пенообразующую способность) определяли методом П.А. Ребиндера (методом кратности пен) и выражали в процентах.
Устойчивость ГДС за определенную продолжительность времени вычисляли как отношение начальной высоты ГДС к конечной и выражали в процентах.
Дисперсность ГДС, размер и количество воздушных пузырьков определяли методом микрофотографирования с предварительным замораживанием образцов в атмосфере жидкого азота.
Результаты и их обсуждение
На рис. 1 приведены микрофотографии пектина АРА 105 при увеличении в 100, 200 и 500 раз. Из полученных изображений следует, что структура элементов пектина АРА 105 состоит из дисперсных частиц неправильной формы, размером 20-250 мкм, в некоторых областях наблюдаются крупные гранулы размером свыше 300 мкм (рис. 1а). На поверхности гранул присутствуют кристаллические скопления (рис. 1в). Их размер может варьировать от нескольких микрометров до 30-40 мкм (рис. 1б). Насыпная плотность пектина АРА 105 равна 580 г/дм3.
а
б
в
Рис. 1. Микроструктура пектина АРА 105 при кратности увеличения: а - 100 раз; б - 200 раз; в - 500 раз.
Основным структурным элементов макромолекул пектина как полисахарида растительных тканей является галактопиранозилуроновая кислота, в состав которой входит L-D-галактурон. В состав пектина входят также нейтральные углеводы, такие как галактоза и арабиноза. Характер распределения сложноэфирных групп в макромолекуле пектина влияет на такие физико-химические свойства, как способность к гелеобразованию, растворимость и поверхностная активность. На термодинамическую гибкость макромолекул пектина в значительной степени влияет степень этерификации. Растворимость пектина в воде можно повысить за счет снижения молекулярного веса и повышения степени этерификации (рис. 2).
Пектин проявляет наибольшую стабильность при рН от 3 до 4 (рис. 3). Отклонение рН в одну из сторон от данного диапазона ведет к снижению плотности заряда макромолекул пектина, причем данное явление наиболее выражено при повышении температуры свыше 50 °С.
Рис. 2. Влияние молекулярного веса (1) и степени этерификации (2) на долю нерастворенного остатка пектина АРА 105 в водном растворе через 30 мин. после начала диффузии.
Рис. 3. Зависимость вязкости раствора пектина АРА 105 от уровня рН.
Пектины высокой степени этерификации обладают способностью к гелеобразованию в кислой среде при наличии сахарозы, в то время как пектины с низкой степенью этерификации – при наличии солей поливалентных металлов. Широкое распространение пектинов как стабилизаторов структуры в кондитерской и фармацевтической промышленности обусловлено их физиологической инертностью и хорошей способностью к гелеобразованию.
На рис. 4 приведен спектрометрический профиль определения компонентного состава пектина АРА 105. В полученном профиле наблюдаются три пика, соответствующих углероду, кислороду и натрию и пологая площадка, соответствующая азоту.
Компонентный состав пектина АРА 105 представлен в табл. 1. Содержание углерода и азота почти на том же уровне, что у конжаковой камеди. В составе пектина АРА 105, так же как у карбоксиметилцеллюлозы, присутствует натрий и хлор в количестве 3,28 и 0,12% соответственно.
Рис. 4. Спектрометрический профиль компонентного состава пектина АРА 105.
По полученной микрофотографии структуры пектина АРА 105 на рис. 5а определено содержание микропустот, а по микрофотографии на рис. 4.5.5в, являющейся фрагментом фотографии из рис. 1в, создана маска дисперсных образований на поверхности элементов стабилизатора структуры. Соответствующие микрофотографии и полученные маски представлены на рис. 5.
Таблица 1
Компонентный состав пектина АРА 105
Элемент |
Относительная масса, % |
Углерод |
29,04±0,87 |
Азот |
22,70±0,69 |
Кислород |
44,86±1,34 |
Натрий |
3,28±0,10 |
Хлор |
0,12±0,004 |
Содержание микропустот в пектине АРА 105 составило 39,60±1,2%, а содержание дисперсных образований на поверхности элементов стабилизатора структуры составило 12,69±0,7%. Стоит также отметить, что для получения маски, представленной на рис. 3г, возникла необходимость в повышении контрастности изображения и ручной коррекции некоторых областей маски вследствие того, что искомые элементы на микрофотографии имели неоднородный цвет по всей поверхности.
а б
в г
Рис. 5. Результаты определения доли микропустот (а, б) и дисперсных образований (в, г) пектина АРА 105: а - микрофотография с увеличением в 100 раз; б - маска микрофотографии, представленной на рис. 5а; в - фрагмент микрофотографии; г - маска микрофотографии, представленной на рис. 5в.
Заключение
Таким образом, микроструктура пектина АРА 105 характеризуется средней насыпной плотностью 580 г/дм3, элементы которой представлены в виде дисперсных частиц неправильной формы размером 20-250 мкм, а также крупными гранулами размером свыше 300 мкм. Помимо углерода, азота и кислорода в пектине АРА 105 присутствуют натрий и хлор. Доля микропустот и дисперсных образований на поверхности элементов составляет соответственно 39,60 и 12,69%.
Основанием для проведения научно-исследовательских, технологических исследований является Договор № 1 от 01.01.2013 на выполнение научно-исследовательских, опытно-технологических работ с Дополнением № 1 от 13.02.2013 в рамках Комплексного проекта «Разработка технологии и организация высокотехнологичного промышленного производства фармацевтического желатина для капсул и его аналогов» по постановлению Правительства РФ № 218, 3 очередь.
Рецензенты:
Попов А.М., д.т.н., профессор, зав. кафедрой прикладной механики ФГБОУ ВПО «КемТИПП», г. Кемерово;
Курбанова М.Г., д.т.н., зав. кафедрой технологии хранения и переработки сельскохозяйственной продукции ФГБОУ ВПО «Кемеровский государственный сельскохозяйственный институт», г. Кемерово.
Библиографическая ссылка
Просеков А.Ю., Ульрих Е.В., Козлова О.В., Дышлюк Л.С. ИЗУЧЕНИЕ СВОЙСТВ ПЕКТИНА КАК РАСТИТЕЛЬНОГО АНАЛОГА ФАРМАЦЕВТИЧЕСКОГО ЖЕЛАТИНА // Современные проблемы науки и образования. – 2014. – № 5. ;URL: https://science-education.ru/ru/article/view?id=14561 (дата обращения: 03.12.2024).