Существенным недостатком традиционных видов бетона является их склонность к трещинообразованию, что приводит к снижению долговечности изделий и конструкций. Особенно ярко данный недостаток проявляется при изготовлении элементов сложных геометрических форм, которые находят применение в реставрационных работах. Очевидно, что одним из условий обеспечения качества возводимых и реставрируемых зданий и сооружений является применение эффективных строительных материалов, в том числе дисперсно-армированных бетонов (фибробетонов) - композитов, в которых воедино собраны лучшие качества исходных составляющих.
В общем случае фибробетоном называют композиционный материал, состоящий из цементной (плотной или поризованной, с заполнителем или без него) матрицы с равномерным или заданным распределением по ее объему ориентированных или хаотично расположенных дискретных волокон (фибр) различного происхождения [1, 2].
Цель исследования
Цель исследований заключалась в оценке эффективности фибробетонов для изготовления широкого диапазона элементов декора, длительно эксплуатируемых при знакопеременных температурах в условиях крупных городов с агрессивной воздушной средой.
Материал и методы исследования
В настоящее время для получения дисперсной арматуры применяют стальные, минеральные, полимерные волокна. В наших исследованиях основное внимание уделено стальной и полимерной фибре. При этом в работе применялись как стандартные (метрологически апробированные), так и оригинальные методы исследований [5].
Результаты исследований
Исследования, проводимые на протяжении последних десятилетий, убедительно показывают, что дисперсное армирование улучшает механические характеристики бетонов: повышает трещиностойкость, ударостойкость, прочность на растяжение и изгиб; способствует стойкости бетона к воздействию агрессивной среды; позволяет сократить рабочие сечения конструкций и в ряде случаев отказаться от использования стержневой арматуры или уменьшить ее расход. Таким образом, создаются условия для снижения материалоемкости и трудоемкости строительной продукции, увеличения ее номенклатуры, повышения архитектурно-художественной выразительности новых и реставрируемых объектов [2, 4, 6].
При этом масса полученной информации позволила определить эффективные области использования различных видов волокон в качестве дисперсной арматуры (рис.1) и выделить некоторые закономерности, которые могут считаться общепризнанными [3, 4]:
1) свойства фибробетона определяются видом применяемых волокон и бетона, их количественным соотношением и во многом зависят от состояния контактов на границе раздела фаз;
2) существенное повышение прочностных характеристик композита по сравнению с исходным бетоном с сохранением достигнутого уровня во времени обеспечивается использованием высокотехнологичных волокон, химически устойчивых по отношению к матрице и с большим, чем у нее, модулем упругости;
3) вид волокон, их относительная длина (l/d) и процентное содержание в смеси (μ) должны назначаться, исходя из требований к изделиям и конструкциям с учетом принятой технологии. Отступление от оптимальных значений указанных параметров в большую или меньшую сторону снижает эффективность дисперсного армирования;
4) при оптимальных параметрах армирования введение волокон способствует улучшению структуры и свойств исходного бетона, повышению его стойкости и долговечности.
Рисунок 1. Области эффективного использования армирующих волокон
В настоящее время достаточно изучены и прошли определенную производственную проверку следующие разновидности фибробетонов: бетон, армированный стальными волокнами различной длины и поперечного сечения (сталефибробетон); легкий бетон на пористых заполнителях, армированный стальными или синтетическими волокнами; плотный или поризованный цементно-песчаный бетон, армированный синтетическими высоко- или низкомодульными волокнами; ячеистый фибробетон, армированный низкомодульными синтетическими волокнами.
Проведенные исследования позволили определить области рационального использования указанных разновидностей фибробетонов. Так, применение сталефибробетона наиболее эффективно в тонкостенных плоских и криволинейных конструкциях, безнапорных и низконапорных трубах, а также при изготовлении ударостойких и изгибаемых конструкций с целью исключения дополнительной арматуры и связанных с ней работ. При этом стальную фибру получают резанием низкоуглеродистой проволоки, фольги или листовой стали, формованием из расплава, фрезерованием полос и слябов, а также прерывистым вибрационным резанием в ходе токарного процесса. Прочность сталефибробетона, армированного фрезерной и токарной фиброй, может достигать при изгибе 30...35 МПа, а при сжатии 80...100 МПа.
В качестве примера успешного использования сталефибробетона можно привести данные, согласно которым на объектах строительства Санкт-Петербурга и Ленинградской области забито более 30000 свай различной конструкции с применением этого материала, что обеспечило экономию средств в размере 30 %.
Более 15 лет Волховский КСК в рамках опытно-промышленного производства осуществлял выпуск сталефибробетонных колец колодцев способом роликового прессования. Технологическая линия оснащена высокопроизводительным оборудованием, в том числе позволяющем изготавливать и саму стальную фибру из проволоки различного диаметра.
Положительно зарекомендовал себя сталефибробетон в конструкциях подземных сооружений, о чем свидетельствует как зарубежный, так и отечественный опыт. В частности, на протяжении ряда лет успешно эксплуатируется один из участков тоннеля Петербургского метрополитена, выполненный в сталефибробетонном варианте. При этом в качестве дисперсной арматуры для изготовления тюбингов и лотковых блоков использовалась фибра, полученная прерывистым вибрационным резанием, которая, по мнению специалистов, может составить серьезную конкуренцию традиционной фибре из проволоки.
Легкий сталефибробетон на мелких пористых заполнителях средней плотностью 1600...1800 кг/м3 и прочностью при изгибе до 25 МПа, разработанный в СПбГАСУ, нашел применение в производстве плит фальшпола и элементов временной шахтной кровли. В данном случае некоторое удорожание изделий из-за повышенного расхода фрезерной и токарной фибры компенсируется облегчением ручного труда и безопасностью проведения работ в условиях подземного строительства.
В числе перспективных неметаллических волокон следует отметить фибру из щелочестойкого стекловолокнистого ровинга и полимерных природных и синтетических волокон.
Эффективным материалом для ограждающих конструкций и теплоизоляционных изделий является ячеистый фибробетон неавтоклавного твердения. В этом случае для армирования используются низкомодульные синтетические фибры, представляющие собой отрезки моноволокон, комплексных нитей и фибриллированных пленок, для изготовления которых в ряде случаев целесообразно использование промышленных отходов соответствующих производств. Введение таких волокон в пено- или газобетонные смеси позволяет в 2...2,5 раза увеличить прочность при изгибе, до 1,5 раз - прочность при сжатии, в 7...9 раз - ударостойкость исходного ячеистого бетона. Улучшение поровой структуры материала в результате дисперсного армирования способствует снижению водопоглощения и капиллярного подсоса, что обеспечивает повышение эксплуатационных характеристик изделий и конструкций. Так, морозостойкость ячеистого фибробетона достигает 75...100 циклов попеременного замораживания и оттаивания. Фибровое армирование полностью исключает появление и развитие усадочных трещин в процессе твердения и последующей эксплуатации материала.
Разработки СПбГАСУ нашли применение в производстве строительных материалов ООО «Красное» (С.-Петербург) и ЗАО «Фиброн» (г. Гатчина, Лен. обл.), освоивших серийный выпуск изделий из бетонов, армированных синтетическими волокнами. В настоящее время фибропенобетонные плиты (рис. 2), обладающие повышенной прочностью, ударостойкостью, необходимыми тепло- и звукоизоляционными свойствами, успешно применяются для возведения межкомнатных и межквартирных перегородок, а также в многослойных конструкциях наружных стен зданий и сооружений. Из плотного бетона, в котором синтетическая фибра служит для увеличения ударо- и морозостойкости, устранения усадочных трещин, изготавливаются сборные декоративные элементы (рис. 3) и изделия малых архитектурных форм с применением немедленной распалубки (рис. 4). Армирование легкого бетона синтетической фиброй приводит к существенному улучшению структуры и физико-механических свойств материала, которые в результате превышают показатели лучших мировых аналогов. Так, при средней плотности 1300...1400 кг/м3 легкий фибробетон характеризуется пределом прочности при сжатии до 35...40 МПа, маркой по морозостойкости до F300...F400 и маркой по водонепроницаемости до W10...W16. Композит с указанными характеристиками успешно применяется для производства легких, прочных и долговечных облицовочной плитки и декоративного камня, а также может быть использован в монолитном варианте при выполнении реставрационных работ.
Рисунок 2. Фибропенобетонная плита
а) б)
а) фибробетонные «кронштейны» перед монтажом
б) вид фасада с элементами фибробетонных конструкций
Рисунок 3. Реставрация фасада Смольного собора
Рисунок 4. Элементы благоустройства в Красном Селе (Санкт-Петербург)
В числе последних отечественных разработок в области фибробетонов можно назвать сырьевую смесь для производства крупноразмерных фиброцементных плит толщиной 8-10 мм, в которой вместо природного асбеста в качестве армирующего материала используются целлюлозные волокна. Плиты предназначены для наружной и внутренней отделки ограждающих конструкций зданий и сооружений и могут быть использованы при устройстве вентилируемых фасадов и внутренних перегородок, а также при изготовлении многослойных плоских и объемных конструктивных элементов (сэндвич-панелей, сантехкабин, шахт лифтов и др.). Данный материал незаменим в условиях открытой стройплощадки, его применение гарантирует удобство и круглогодичность работ, простоту раскроя и обработки, отсутствие мокрых процессов и высокую скорость монтажа. Ровная и гладкая поверхность плиты хорошо окрашивается, а также допускает нанесение каменной крошки и других отделочных покрытий. Выпуск данной продукции освоен ЗАО «НПО «Фибрит» на действующих технологических линиях комбината «Мостермостекло» (Московская обл.).
Следует отметить, что наряду с указанными конструкциями получили апробацию и способы изготовления фибробетонов, которые позволяют применять, кроме традиционного виброформования, такие эффективные приемы, как раздельную укладку, торкретирование, погиб свежеотформованных плоских заготовок, вакуум-прессование, пневмонабрызг, роликовую обкатку и другие.
Вывод
Анализ приведенных данных и накопленный практический опыт показывает, что использование дисперсно-армированных бетонов различной плотности и прочности позволяет интенсифицировать процессы, повысить качество и снизить ресурсопотребление при возведении новых, а также реконструкции и реставрации существующих строительных объектов.
Рецензенты:
- Морозов В. И., д.т.н., проф., советник РААСН, зав. кафедрой железобетонных конструкций ФГБОУ ВПО «Санкт-Петербургский государственный архитектурно-строительный университет», Санкт-Петербург, г. Санкт-Петербург.
- Харитонов А. М., д.т.н., профессор кафедры строительных материалов и технологий ФГБОУ ВПО «Санкт-Петербургский государственный архитектурно-строительный университет», г. Санкт-Петербург.