Классификация водонапорных систем Западно-Сибирского мегабассейна впервые была опубликована В.М. Матусевичем и О.В. Бакуевым в 1986 г. Элизионная водонапорная система Западно-Сибирского мегабассейна пространственно относится к западному мегаблоку, ограниченному Восточно-Уральским краевым швом и Омско-Гыданской структурной зоной [3,7–9].
В элизионной литостатической водонапорной системе напор жидкости создается при ее выжимании из уплотняющихся осадков в коллекторы и частично — при уплотнении самих коллекторов с выжиманием жидкости из мест с большим давлением в места с меньшим давлением в процессе уплотнения глинистых пород и «выжимания» из них вод особого состава – элизионных. Таким образом, происходит процесс разбавления первоначально захороненных седиментационных вод элизионными (отжатыми). Меняется гидрогеохимический облик подземных вод: в их составе увеличивается содержание гидрокарбонат ионов, возрастает щелочность, уменьшается минерализация.
Общая геологическая и гидрогеологическая характеристика района исследований. Гидрогеологическая стратификация западного мегаблока представляется в виде трех гидрогеологических бассейнов (палеозойского, мезозойского и кайнозойского) и семи самостоятельных гидрогеологических комплексов: олигоцен-четвертичного, турон-олигоценового, апт-альб-сеноманского, неокомского, верхнеюрского, нижне-среднеюрского, триас-палеозойского [9]. Основная особенность геологического строения района исследований – наличие в разрезе мощнейшей толщи глин неокомского возраста (600–750 м) — это обстоятельство во многом и определило специфику гидрогеологических условий района. Глины неокомского возраста послужили своего рода источником большого количества элизионных вод.
Гидрогеодинамические аспекты формирования подземных вод нижне-среднеюрского комплекса рассмотрены на примере Талинского месторождения нефти, в тектоническом плане расположенном в пределах Красноленинского свода. Талинское месторождение выбрано в связи с наличием достаточного фактического гидрогеохимического материала и многочисленных актов испытаний скважин до начала эксплуатации. В пределах Талинской площади к настоящему времени пробурено 5385 скважин, отбор керна проводился в 540 скважин. Обработка и анализ данных осуществлялись в статистическом пакете SPSS версии 17 [14].
Отличительной особенностью гидрогеологического поля здесь является наличие дефицита пластового давления в юрских отложениях (до 5– 8 МПа). Депрессионный тип водонапорной системы в юрских отложениях вероятнее всего сформировался в результате частичной разгрузки вод в приразломные зоны фундамента по разрывным нарушениям. На гидрогеодинамическую обстановку оказало влияние близкое положение Восточно-Уральского краевого шва, по мере приближения к которому концентрация разрывных нарушений в фундаменте возрастает.
В статье рассмотрены особенности химического состава подземных вод нижне-среднеюрского гидрогеологического комплекса. К рассматриваемому комплексу относятся отложения тюменской (ЮК2-4., ЮК5-6, ЮК7-9) и шеркалинской (ЮК10, ЮК11) свит.
Современный гидрогеохимический облик подземных вод нижне-среднеюрского гидрогеологического комплекса. В настоящее время подземные воды нижне-среднеюрского гидрогеологического комплекса имеют гидрокарбонатно-хлоридный натриевый состав. Тип вод по В.А. Сулину — гидрокарбонатно-натриевый. Интервал изменения величины минерализации колеблется в широких пределах: от 2–3 г/л до 14–16 г/л, причем в рассматриваемом комплексе в пределах Талинского месторождения наблюдается классическая гидрогеохимическая зональность, несмотря на общую инверсионную гидрогеохимическую зональность от апт-альб-сеноманского до нижне-среднеюрского гидрогеологических комплексов.
Минерализация, как было отмечено выше, в нижне-среднеюрском гидрогеологическом комплексе увеличивается с глубиной (рис. 1.). Однако в отдельных скважинах в отложениях шеркалинской свиты Ю11 встречаются воды с минерализацией 2,4–5,3 г/л. Фоновая минерализация подземных вод нижне-среднеюрского гидрогеологического комплекса Красноленинского свода 8–9 г/л.
а) б)
Рис. 1. Графики изменения с глубиной минерализации (а) и содержания гидрокарбонат-ионов (б) в водах нижне-среднеюрского гидрогеологического комплекса
Максимальные величины минерализации подземных вод нижне-среднеюрского гидрогеологического комплекса достигают 15–16 г/л. Эти значения превышают фоновые, но в целом являются нормальными для данных глубин и достаточно часто встречающимися. Их формирование объясняется известными процессами взаимодействия в системе «вода – порода».
Характер изменения величины минерализации свидетельствует о поступлении элизионных вод и смешении их с захороненными седиментационными водами: зона вод с пониженной минерализацией находится в верхней части комплекса, ближе к фроловскому барьеру (рис. 1). Здесь же отмечается высокая концентрация гидрокарбонат-ионов до 3800–4300 мг/л (60–70 мг-экв/л). Эффект увеличения концентрации гидрокарбонат-ионов в отжатых водах отмечается во многих работах, посвященных элизионному водообмену. Ф.Н. Зосимов связывает его со значительным превышением константы диссоциации воды у поверхности твердой фазы и неоднородностью распределения ионов Н+ и ОН- в диффузном и адсорбционном слоях. Источник гидрокарбонат-иона – это и СО2, высвобождающийся в процессе дегидратации монтмориллонита, глубинной миграции, при декарбоксилизации жирных и нафтеновых кислот, в результате других процессов превращения растворенного органического вещества пород на разных стадиях катагенеза. Именно в Красноленинском районе породы шеркалинской свиты находятся на стадии глубинного катагенеза [11], хотя в соседних районах они не выходят из зоны среднего катагенеза.
При повышенном содержании в водах гидрокарбонат-ионов фиксируется и повышенное содержание микроэлементов в водах. Как отмечено В.М. Матусевичем [6, 10], щелочные воды с повышенным содержанием гидрокарбонатов являются благоприятным фактором для перехода в раствор органических веществ, металл-органических комплексов, а тем самым и микроэлементов.
Значения генетического rNa/rCl- коэффициента колеблются в пределах от 0,1 до 3,6, составляя в среднем 1,4. rNa/rCl коэффициент показывает по В.А. Сулину степень метаморфизации вод. Н.Ф. Чистяковой и М.Я. Рудкевичем [13] на основе результатов большого количества анализов (879) подземных вод ЗСМБ сделан вывод о том, что гидрокарбонатно-натриевый тип вод (по В.А. Сулину) с натрий-хлорным коэффициентом более 1 свидетельствует об элизионном генезисе вод. В нижне-среднеюрском гидрогеологическом комплексе Красноленинского свода с глубиной наблюдается его уменьшение (рис. 3), и в более чем 86% проб нижне-среднеюрского гидрогеологического комплекса Талинского месторождения натрий-хлорный коэффициент превышает 1. Следовательно, вниз от фроловского барьера уменьшается доля элизионных вод и увеличивается доля вод седиментационных.
Однако следует учесть [5], что «…хлор является не только основным «седиментогенным» элементом, но также одним из «эндогенных» компонентов».
Рис. 2. График изменения натрий-хлорного коэффициента в подземных водах нижне-среднеюрского гидрогеологического комплекса
Хлор может в значительных количествах поступать с эндогенными флюидами [2], что неизбежно будет трансформировать коэффициенты, в которых он используется.
Интересное объяснение формирования инверсионной зональности в разрезе глубоких горизонтов ЗСМБ дается А.А. Розиным [12]. Он считает, что в результате импульсивности миграционных процессов мигрирующий глубинный флюид может транзитом проскочить нижнюю часть разреза и задержаться в пластах, расположенных выше. Это обстоятельство создает некоторую перевернутость гидрохимического разреза. Катионный обмен с породой может обогатить солевой состав подземных вод кальций-ионом, а затем привести к удалению из него гидрокарбонат-иона в результате выпадения из раствора CaCO3 и т.д. Вероятно, это возможно в пределах объекта исследований, но происходит локально, очагово.
Содержание кальция и магния увеличивается в рассматриваемом комплексе с глубиной. Результаты многочисленных опытов по отжиму воды из глин указывают на возрастание содержания ионов магния при отжиме, особенно в последних порциях отжатой воды. Например, в исследуемом районе зафиксирован скачок концентрации магния в подземных водах верхней части нижне-среднеюрского комплекса, затем резкое снижение, вновь рост ближе к фундаменту.
Особое внимание среди рассматриваемых компонентов следует обратить также на B/Br-коэффициент. Соотношение бора и брома согласно исследованиям Т.А. Киреевой и В.А. Всеволожского [4, 5] указывает на генезис глубинных вод. Растворимость соединений бора, в отличие от соединений брома, резко увеличивается с повышением температуры. Его содержание, по данным Пилипенко Г.Ф., в высокотемпературных гидротермах может достигать 600–800 мг/л (при среднем содержании в хлоридных натриевых термах 150–200 мг/л). Установлено, что значения B/Br-коэффициента, приближающиеся к 1 или превышающие эти значения, должны свидетельствовать о резком увеличении температуры питающего раствора, т.е. о поступлении глубинных флюидов. В подземных водах нижне-среднеюрского гидрогеологического комплекса B/Br-коэффициент растет с уменьшением минерализации раствора (рис. 3).
Следовательно, при наличии аномалий гидрогеохимического поля с низкой минерализацией и высоким B/Br-коэффициентом следует говорить о внедрении высокотемпературных глубинных флюидов.
Рис. 3. Зависимость B/Br-коэффициента от минерализации в подземных водах нижне-среднеюрского гидрогеологического комплекса
Выводы
Анализ поведения основных компонентов, rNa/rCl и B/Br-коэффициентов свидетельствует о сложной природе формирования химического состава подземных вод нижне-среднеюрского гидрогеологического комплекса. Процессы смешения элизионных, седиментационных вод и глубинных флюидов сформировали неоднозначную гидрогеохимическую картину. Элизионные воды по динамически-напряженным зонам могли проникать в нижние части разреза [1], не исключена вероятность разгрузки в разломы фундамента. Глубинные флюиды вследствие периодичности и пульсационности [2] своего движения могли «проскакивать» нижние части разреза, опять же благодаря развитию динамически напряженных зон, и попадать в верхние части разреза. Подземные воды нижне-среднеюрского гидрогеологического комплекса Талинского месторождения представляют собой результат смешения первоначальных «захороненных» седиментационных вод, элизионных вод и глубинных флюидов, вероятно, периодически поступающих из фундамента. Оценить долю каждого вида вод – задача, требующая новых методологических подходов.
Рецензенты:
Бешенцев В.А., д.г.-м.н., профессор кафедры геологии месторождений нефти и газа Тюменского государственного нефтегазового университета, г. Тюмень;
Попов И.П., д.г.-м.н., профессор кафедры геологии месторождений нефти и газа Тюменского государственного нефтегазового университета, г. Тюмень.