С целью оценки экологических параметров полученных изоляционных материалов, с точки зрения их воздействия на окружающую среду, проведён комплекс лабораторных экспериментальных исследований.
Так, путём биотестирования установлено, что острого токсического действия вытяжек из отходов синтетических каучуков на биологические объекты: дафнии, водоросли и культуру редиса не выявлено [4]. Также проведена оценка экологической безопасности применения полученного гидроизоляционного материала с использованием базовых компонентов каучук содержащей крошки из отходов синтетических каучуков, путём проведения физико-химических исследований полученных материалов, изготовленных на основе полиуретанового клея марки TOP-UR-E-PVC. Результаты исследований по таким веществам, как диоктилфталат, дибутилфталат, этиленгликоль, фенол и формальдегиды, показали значения, не превышающие гигиенические нормативы этих веществ. Проведены исследования гидроизоляционных материалов, изготовленных на основе вышеназванного полиуретанового клея (с установленными экологически безопасными свойствами), для их применения в неоднородных климатических условиях (осуществлялось охлаждение воды c температурой в диапазонах от 0°С до 5°С и её нагревание в диапазонах от 25°С до 35°С). Экспериментальным путем установлено, что изменение температуры воды не оказывает заметного влияния на изменение концентраций загрязняющих веществ, таких как ионы аммония, нитрит-ионы, нитрат-ионы, водородный показатель, сухой остаток, хлориды, сульфаты, железо, взвешенные вещества, нефтепродукты, БПК5, кальций, цинк и медь. Результаты исследований по данным веществам также показали значения, не превышающие гигиенические нормативы.
Следующим этапом работы, после оценки негативного воздействия на окружающую среду изоляционных материалов, стала оценка используемых в настоящее время противофильтрационных экранов в основаниях полигонов отходов, с целью определения возможности использования полученных гидроизоляционных материалов по прямому предназначению.
В настоящее время, для устройства противофильтрационных экранов на почвогрунтах, имеющих в естественном состоянии коэффициент фильтрации более 10-5 см/с, предусматриваются следующие типы экранов: латекс, глиняный, грунтобитумный, двухслойный и экран из полиэтиленовой пленки [2, 5]. Вместе с тем, устройство искусственных противофильтрационных экранов (Таблица - 1) для полигонов размещения твердых бытовых отходов имеет ряд особенностей по способам укладки и последующей обработке. При выборе способа укладки анализируются результаты геологических изыскательских работ на предмет выбора экрана. Немаловажными являются гидрогеологические параметры местности (уровень залегания подземных вод, вид грунта, простирание и др.), а также климатические условия (осадки, температура, влажность и др.).
Таблица 1
Характеристика экранов по видовому и размерному планированию
Наименование непроницаемого экрана |
Толщина, мм |
Материалы, укладываемые поверх основного слоя |
Толщина, мм |
Латекс |
300 |
Песчаный грунт Мелкозернистый грунт |
400 500 |
Грунтобитумный |
200-400 |
- |
- |
Глиняный |
не < 500 |
Грунт (планировочный) |
200-300 |
Полиэтиленовая пленка, стабилизированная сажей |
200 |
Крупнозернистый песок |
400 |
Грунтобитумный экран обрабатывается органическими вяжущими, отходами нефтепереработки или многократной битумной пропиткой. При устройстве экрана из полиэтиленовой пленки в два слоя, дополнительно может устраиваться дренажный слой из крупнозернистого песка. Дренажный слой устраивается на случай аварийных ситуаций и контроля выхода фильтрата [1, 5].
Результаты исследований показали, что физико-химические составы изоляционных материалов из продуктов переработки ОСКУ и латексов идентичны по компонентам практически на 95%, различия наблюдались в концентрациях входящих в состав примесей.
Применение изоляционных материалов из базовых компонентов каучук содержащей крошки в основании полигона для захоронения твердых бытовых отходов, взамен латекса требовало технического обоснования и рассмотрения. Для данного сравнения необходима оценка отличающихся параметров, а именно номинально необходимых теоретических и полученных результатов исследований гидроизоляционных материалов.
В этой связи выполнены измерения показателей водонепроницаемости образцов изоляционного материала из базовых компонентов каучук содержащей крошки (200х200х4 мм) и латекса (200х200х4 мм). Образцы герметично укреплялись к основанию трубы диаметром 100 мм, образуя, цилиндр. В свою очередь, данный цилиндр устраивался на сетку с диаметром ячеек по 380 мм, между сеткой и образцами помещалась фильтровальная бумага. Затем, в цилиндр заливалась очищенная водопроводная вода, высота уровня которой составляла 300 мм от основания цилиндра, под давлением 0,3 Мпа. Каждые сутки проверялось наличие пятна на бумаге в течение 72 часов. Пятен воды обнаружено не было.
Вместе с тем, выполнены измерения показателей водопоглащения в холодной воде. Подготовленные образцы изоляционного материала из базовых компонентов ОСКУ (50х50 мм) и латекса (50х50 мм) помещали в дистиллированную воду и выдерживали в течение 24 часов при температуре 230С. После этого образцы вынимались из воды и вытирали сухой тканью, через одну минуту взвешивались. Показатель водопоглащения по латексу составил 1,0%, по изоляционному материалу 1,5% (при допустимом уровне 2%).
Физико-механические свойства образцов латекса и изоляционного материала (55х9х2 мм) оценивались на растяжение, результаты отражены в таблице 2.
Таблица 2
Сравнение основных технических характеристик латекса и изоляционного материала из базовых компонентов каучук содержащей крошки
Наименование материала |
Водонепроницаемость, % |
Водопоглащение, % |
Предел прочности при разрыве, Мпа |
Размеры образцов |
200х200х4 мм |
50х50 мм |
55х9х2 мм |
Изоляционный материал из базовых компонентов каучук содержащей крошки |
100 |
1,5 |
19,5 |
Латекс |
100 |
1,0 |
15 |
Испытуемые образцы отличились лишь по пределу прочности при разрыве и водопоглащению. Нормативное водопоглащение образцов согласно методике не должно превышать 2 %, в этой связи, результаты измерений по данному параметру не рассматривались. Однако, результаты измерений прочности материалов при разрыве показали, что предел прочности изоляционного материала из базовых компонентов каучук содержащей крошки в сравнении с латексом выше на 23%.
В свою очередь, устройство котлована, на стадии проектирования, планируется исходя из уровня залегания подземных вод (не менее 1 м от дна).
С точки зрения эколого-экономических критериев, земельные участки в форме прямоугольника, позволяющие организовать в будущем максимальную высоту складирования отходов, являются наиболее «выигрышными».
Необходимая площадь земельного участка рассчитывается путём разделения проектной вместимости полигона твердых бытовых отходов на среднюю высоту складируемых отходов (с учётом коэффициента уплотнения) [5, 6].
При этом расчёт площади земельного участка, необходимого для складирования твёрдых бытовых отходов, осуществляется на основании номинальной вместительности полигона отходов и с учётом удельных нормативов образования и накопления твёрдых бытовых отходов на одного жителя на конкретной урбанизированной территории.
Размещение же изоляционного грунта, полученного при планировании и устройстве котлована, состоит из кавальеров по периметру полигона отходов - первой и второй очереди. Для обеспечения равномерного распределения фильтрата по всей площади котлована, основание полигона отходов устраивается в горизонтальном положении. Немаловажным фактором является рельеф местности, влияющий, например, на количество рабочих карт и подъездных путей для мусоровозов и соответственно расположения сооружений.
В настоящей статье одним из основных технологических решений для устройства изоляционного слоя в основании полигона твердых бытовых отходов является монтаж основания котлована изолирующими материалами размером 1,2 х 1,2 м каждый.
Предлагаемый способ укладки состоит из следующих стадий: 1) устройство первого слоя толщиной 150 мм; 2) номинальный пролив швов и поверхности первого слоя битумным вяжущим веществом; 3) устройство второго слоя толщиной 150 мм; 4) номинальный пролив швов битумным вяжущим веществом и 5) укладка поверхности второго слоя песчаным грунтом толщиной 400 мм. Методы устройства котлованов для других типов и видов полигонов регламентируются Инструкцией по проектированию, эксплуатации и рекультивации полигонов для твёрдых бытовых отходов. Между тем, приведённые технологические решения также могут быть приняты к использованию для любого вида полигона для размещения твердых бытовых отходов.
На основании теоретических и экспериментальных исследований установлена возможность и обоснована целесообразность использования продуктов переработки ОСКУ при производстве экологически безопасных гидроизоляционных материалов для изолирующих слоев полигонов отходов. Авторами проведен комплексный анализ и систематизация способов утилизации отходов синтетических каучуков, предложена технология их утилизации посредством переработки в изоляционные материалы с использованием полиуретановых связующих веществ. Выбраны рациональные технологические параметры изготовления изоляционных материалов и, как результат, определены характеристики и области применения изготавливаемых изоляционных материалов.
Рецензенты:
Михеев М.Ю., д.т.н., профессор, заведующий кафедрой «Информационные технологии и системы», Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Пензенский государственный технологический университет», г. Пенза;
Рыжаков В.В., д.т.н., профессор, заведующий кафедрой «Техническое управление качеством», Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Пензенский государственный технологический университет», г. Пенза.