Scientific journal
Modern problems of science and education
ISSN 2070-7428
"Перечень" ВАК
ИФ РИНЦ = 1,006

CHANGE OF HARDNESS OF SOILS OF COASTAL TERRITORIES OF AN AVERAGE WATERCOURSES OF TOM' IN THE CONDITIONS OF RECREATIONAL INFLUENCE

А.Г. Егоров
Experimental threshold sizes of consolidation of soil are by defned at recreational infuence. Comparison of changes of hardness of dry soils and in the conditions of humidifying is spent. infuence of hardness of soils on processes of natural restoration of vegetation is revealed. Keywords: recreational loadings, soil consolidation, restoration of a vegetative cover.

В системе факторов, воздействующих на почвенно-растительный покров и вызывающих антропогенную трансформацию биогеоценозов определенное место занимает рекреационное использование ландшафтов. Имеется большое количество работ, иллюстрирующих изменения растительных сообществ под действием рекреационных нагрузок. Отмеченные рекреационно-дигрессионые преобразования в различных регионах специфичны и зависят от интенсивности использования, генезиса растительности, географических и климатических особенностей [3;5].

Составной частью исследований рекреационных ландшафтов является изучение состояния почвы. На биогенное изменение почвы впервые обратил внимание П.К. Фальковский [7;8]. Первоочередным следствием вытаптывания является уничтожение подстилки и уплотнение верхних почвенных горизонтов.

Уплотнение почвы нарушает структуру, уменьшает водопроницаемость и меняет воздушный режим. В результате этого в корнеобитаемом слое создаются анаэробные или близкие к ним условия. Нарушаются сложившиеся окислительно-восстановительные процессы, снижается биологическая активность. Происходящие изменения, в свою очередь, вызывают все более существенную трансформацию водного и температурного режимов, условий минерального питания и т.д. [2].

Разные почвы неодинаково реагируют на одну и ту же рекреационную нагрузку, в частности, очень важное значение имеет механический состав почв. Реакция песчаных, супесчаных и суглинистых субстратов зачастую весьма различна [9].

По утверждению Бганцовой В. А. и коллег [2] данные разных авторов трудно сопоставлять, что обусловлено как различием в механическом составе и исходной плотности естественных ненарушенных почв, то есть естественной неоднородностью исследуемых территорий, так и причинами методического характера. Используются различные подходы в оценке степени (стадий) рекреационной дигрессии биоценозов, при этом не всегда указывается принцип диагностики, какого придерживался автор.

Очень редко приводятся данные, полученные при исследовании с нормированными нагрузками, позволяющими более точно определить диагностическую роль плотности почвы как показателя степени нарушенности почвенного покрова, полнее понять сущность процессов, происходящих в почве при изменении рекреационной нагрузки.

Спектр используемых показателей для оценки изменений почвенного покрова достаточно широк и аргументируется функциональной ролью в процессах почвообразования и гумусонакопления. Так, в работах В. А. Бганцовой и соавторов [2], рассматривается практически весь спектр почвенных морфологических признаков. Т.И. Алексахина [1] уделяет внимание изменениям почвенной альгофлоры, С. Ю. Грюнталь [4] - мезофауны. Вместе с тем, практически все исследователи отмечают в качестве показательных и интегративных признаков - твердость и плотность почвы в пределах корнеобитаемого горизонта.

Плотность почвы обусловлена характером прилегания механических элементов и структурных отдельностей в сложении почвы. Твердость почвы обеспечивают условия нормального проникновения корней растений и может служить фактором лимитирования процессов восстановления и развития растительности рекреационных ландшафтов.

На основании анализа большого количества работ, эти же авторы приходят к выводу, что наиболее объективным показателем для определения влияния рекреационного влияния на почву и уточнения диапазона допустимых нагрузок может служить изменение твердости почвы.

Следуя рекомендациям перечисленных исследователей, проведено изучение изменений твердости почвы в прибрежной полосе реки Томи, на разнотравно-злаковом луге на серых оподзоленных почвах. На 15 трансект наносились дозированные нагрузки от 1 до 100 проходов. В соответствии с наблюдениями Н. С. Казанской и В.В. Ланиной [6] один проход по трансекте приравнивался к нагрузке 1 чел.час/га. Изменение твердости почвы фиксировалось с использованием твердомера Ревякина в 10-кратной повторности. Проведено 2 серии эксперимента: в сухую погоду и после умеренных атмосферных осадков. На этих же трансектах проведены наблюдения за состоянием растительного покрова. Фиксировалась высота растений, проективное покрытие, фенологическое состояние, показатели надземной и подземной фитомассы.

Выбор в качестве методической основы натурного эксперимента обусловлен тем, что данная территория в настоящее время практически не используется в целях рекреации и реальные нагрузки здесь очень слабые, а на большей площади вообще отсутствуют.

Общие тенденции изменения твердости почв при увеличении рекреационных нагрузок приведены в таблице 1. Диапазон изменений показателей специфичен для каждого слоя почвенного горизонта. Общий размах колебаний от 2,5 до 18,0 кг/см2. Наиболее ярко выраженное увеличение твердости по мере возрастания нагрузки наблюдается в слое от 2 до 5 см.

Таблица 1

Влияние величины нагрузки на твердость почвы; кг/см2 

Глубиина; см

Нагрузка; чел.час/га

1

3

6

9

12

15

18

21

24

27

30

40

60

80

100

Твердость почвы; кг/см2

1

2,6

2,8

3,7

4,3

4,0

4,3

4,4

8,5

9,7

9,8

10,8

12,8

12,8

14,0

16,3

2

2,5

2,8

3,8

4,4

5,4

5,2

5,5

8,7

9,7

9,9

11,8

12,0

12,1

16,4

16,2

3

5,5

5,5

5,5

6,6

6,8

7,9

8,8

11,9

13,9

12,8

12,2

14,0

12,0

16,5

18,0

4

6,5

6,5

6,5

6,8

7,0

7,2

8,2

11,6

19,6

13,6

11,5

13,5

14,6

15,8

16,8

5

6,5

6,5

6,9

7,1

7,3

9,2

9,5

12,5

12,6

13,6

14,8

14,8

14,6

17,8

18,0

7

6,8

6,8

6,8

7,0

7,4

7,5

7,6

8,8

9,0

12,0

11,9

14,0

12,2

14,0

14,6

9

6,5

6,8

6,6

6,8

7,4

7,6

7,6

8,8

7,8

8,0

8,2

8,0

8,2

8,2

8,2

15

7,5

6,6

6,4

6,8

7,6

7,6

7,6

8,8

7,8

7,6

7,4

8,1

8,0

7,8

7,8

Поверхностные горизонты, имея при нагрузке 1 чел.час/га минимальные твердость, сохраняют эти значения до нагрузки 6 чел.час/га. твердости Затем наблюдается постепенное увеличение твердости до нагрузки 18 чел.час/га. Максимальное увеличение твердости наблюдается при нагрузке 21-24 чел.час/га. Следующий пик увеличения твердости наблюдается при нагрузке 80 чел.час/га. Аналогичные явления отмечены и для более глубоких слоев, что согласуется с данными В.А. Бганцовой и др. [2].

По мере углубления от верхнего горизонта фиксируется естественное увеличение твердости. Естественная плотность сложения отмечена на глубине 9 см. На этом уровне увеличение рекреационных нагрузок, при заданных условиях эксперимента, не оказывает существенного воздействия на изменение твердости, что объясняется коротким временем экспериментального рекреационного воздействия на территорию. Но и здесь наблюдается некоторое увеличение твердости в диапазоне нагрузок от 6 до 21 чел. час/га и хотя разность изменений не достоверна , результат воздействия визуально отличим.

При изменении режима увлажненности (за счет умеренных атмосферных осадков) величины твердости почвы в целом сохраняют описанные выше тенденции (табл. 2). Незначительно варьируют лишь диапазоны колебаний.

Таблица 2

Влияние величины нагрузки на твердость влажной почвы; кг/см2  

Глубина; см

Нагрузка; чел.час/га

1

3

6

9

12

15

18

21

24

27

30

40

60

80

100

Твердость почвы;   кг/см2

1

4,6

4,6

4,8

4,8

4,8

7,0

7,2

12,0

14,4

15,6

16,6

16,8

18.8

20,4

26,8

2

5,8

6,8

7,4

7,6

7,2

10,0

8,8

11,8

15,6

15,8

16,4

18,0

18,6

19,2

26,4

3

5,4

7,0

8,4

8,4

9,2

10,4

10,4

12,8

14,6

15,0

15,6

18,0

17,6

21,2

26,8

4

6,0

6,8

4,2

7,4

9,6

9,8

10,6

12,4

14,2

14,2

16,4

18,4

18,4

19,6

25,8

5

6,6

6,8

7,8

7,2

8,4

8,0

9,2

9,6

12,6

14,2

14,6

18,0

18,6

18,2

24,4

7

6,8

6,0

8,6

8,8

8,8

7,0

8,4

7,6

12,5

16,0

17,0

17,2

17,6

18,8

19,6

9

6,6

6,4

7,8

7,6

7,8

7,6

7,8

7,0

8,2

14,8

15,2

17,4

17,4

17,8

16,0

15

8,5

7,6

7,4

7,8

7,6

7,4

8,0

8,0

6,8

7,2

8,2

8,6

7,8

8,0

8,4

Нижняя граница твердости в этих условиях повышается на 2,5 кг/см2. Верхний уровень уплотнения в слое 7 см остается неизмененным. Здесь следует отметить интенсификацию процесса уплотнения почвы. Если в первом случае показатели твердости достигли 7 кг/ см2 при нагрузке 9 чел.час/ га и отмечены лишь для слоев глубже 5 см, то в условиях увлажнения уплотнение почвы достигает рубежа 7 кг/см2 при нагрузке 6 чел.час/га и такая твердость наблюдается уже в 3-х сантиметровом слое почвы.

Оценивая в целом изменение характеристик твердости при различных уровнях рекреационной нагрузки, следует отметить, что максимальному воздействию подвергается поверхностный (до 3-5 см) слой почвы. Максимум уплотнения начинается при нагрузке 24 чел.час/га. В этой точке уплотнение поверхностного горизонта увеличивается в 2 раза и более.

Соотносительный анализ процессов уплотнения почвы и восстановления растительности после снятия нагрузок подтверждает пороговый режим рекреационного воздействия на данный тип почвенно-растительного покрова.

В процессе восстановления на трансектах с нагрузкой 15, 24 чел. час/га заметных изменений в видовом составе не наблюдалось как по сравнению с контролем так и между трансектами. Но на трансектах с большими нагрузками произошли некоторые изменения. Максимум развития получили злаки. На трансектах с высоким уровнем воздействия они составляют основу травостоя, выступая в качестве доминантов. Отмечено появление вейника тростникового (Calamagrostis arundinacea (L.) Roth), костреца безостого (Bromоpsis inermis (Leyss.) Holub). На трансектах с нагрузками 15 и 24 чел.час/га не наблюдалось появление пырея ползучего (Elytrigia repens (L.) Nevski), осота полевого (Sonchus arvensis L.). В то время как при нагрузках 40, 60, 100 чел. час/га осот полевой переходит в разряд обычных.

Следует отметить, что у кровохлебки лекарственной (Sanguisorba officinalis L.), ястребинки зонтичной (Hieracium umbellatum L), нивяника обыкновенного (Leucanthemum vulgare L.) произошла задержка роста, бутонизации с последующей задержкой периода зацветания по сравнению с этими же видами на контрольной площадке. На трансектах с нагрузками 40, 60, 100 чел.час/га отмечено развитие пятен дернин.

Сравнение показателей средних величин общего проективного покрытия на различных трансектах свидетельствует об остаточных влияниях рекреационных воздействий. Даже на трансектах с минимальной нагрузкой величина ОПП на 10-18 процентов ниже контрольной трансекты (табл. 3). На трансектах с нагрузками 60-100 чел. час/га  максимальное развитие получили устойчивые виды, количество которых достигает 74 % (табл. 3) и для которых уплотнение почвы в этом диапазоне не является лимитирующим фактором. Вместе с тем нельзя сказать об удовлетворительных восстановительных процессах на трансектах с максимальными нагрузками. Об этом может свидетельствовать изменение величин среднего прироста и продуктивности сравниваемых участков. Именно эти показатели наиболее наглядно иллюстрируют критическое состояние лугового сообщества, которое вызывается нагрузками, превышающими 40 чел.час/га.

Таблица 3

Средние сезонные показатели злаково-разнотравного луга в процессе восстановления  

нагрузка чел.час/га

прирост, см

кол-во устойчивых видов, %

ОПП %

фенолог состояние, балл

контроль

27.3± 5.9

28.0± 3.7

78.7± 6.4

5.4 ±   0.8

15

24.0 ± 7.2

50.3 ± 1.8

69.6 ± 8.1

3.4 ±   0.5

24

27.8± 7.8

55.8 ±1.2

60.1 ± 8.0

3.6 ±   0.5

40

31.5 ± 8.1

71.1 ±1.9

58.6 ± 8.6

4.2 ±   0.3

60

30.1 ± 7.3

74.0 ±1.7

57.7 ±8.7

3.7 ±   0.5

100

21.6 ± 6.1

74.7 ±3.1

43.0 ± 7.9

3.8 ±   0.6

Общий ход изменений средних показателей прироста на различных трансектах объясняется тем, что при минимальных нагрузках прирост растений снижается за счет неустойчивых видов, а при высоких нагрузках прослеживается повышение прироста за счет появления большого количества устойчивых представителей. Дальнейшее увеличение нагрузок и выход за пределы 40 чел.час/га приводит к постепенному снижению прироста даже устойчивых видов (табл. 4). Абсолютная высота растений на контрольном участке во всех случаях сравнений превышает высоту растений на трансектах с нагрузкой 24, 40, 60 чел. час/га.

Наиболее успешно восстановительный процесс протекает при нагрузках 15 и 24 чел. час/га. Уровень достоверности различий (табл. 4) также свидетельствует о пограничном состоянии растений трансекты с нагрузкой 24 чел. час./га .

Таблица 4

Достоверность показателей сходства (различия) признаков трансект

t

* - значение F - критерия при Р - 95% = 3,33

Таким образом, изучение динамики процессов восстановления подтверждает полученную ранее величину предельно-допустимого уплотнения почвы, которая сдерживает процессы естественного восстановления растительного покрова исследованного фитоценоза. Величина предельно допустимой нагрузки не должна превышать 24 чел. час/га.

Список литературы

  • 1. Алексахина Т. И. Изменение почвенной альгофлоры сложных сосняков под влиянием рекреационных нагрузок // Природные аспекты рекреационного использования леса. М.: Наука, 1987. - С. 126-137.
  • 2. Бганцова В. А., Бганцов В. Н., Соколов Л.А. Влияние рекреационного лесопользования на почву//Природные аспекты рекреационного использования леса. М.: Наука, 1987. - С. 70-95.
  • 3. Горожанкина С. М., Константинов В.Д. Опыт организации природного эталона по изучению динамики таежных экосистем // Экология. 2000. - № 5. - С. 335- 360.
  • 4. Грюнталь С. Ю. Влияние рекреационного лесопользования на почвенное население сосняков // Природные аспекты рекреационного использования леса. М:. Наука, 1987. - С. 137-141.
  • 5. Егоров А. Г., Попова О.А. Общие законно мерности изменений растительности под действием рекреационных факторов. Деп. в ВИНИТИ 29.11.1996. № 34080. 18 с.
  • 6. Казанская Н. С., Ланина В. В. Методика изучения влияния рекреационных нагрузок на древесные насаждения лесопаркового пояса г. Москвы в связи с вопросами организации территорий массового отдыха и туризма. М.: Ин-т геогр. АН СССР, 1975. - 68 с.
  • 7. Фальковский П. К. Исследование влияния пастьбы скота в дубравах Тростянецкого лесничества на рост и производительность леса// Труды по лесному опытному делу Украины. - 1929. Вып. 12. - С. 3-78.
  • 8. Фальковский П. К. Исследования влияния пастьбы скота на физические свойства дубравной почвы в Тростянецком опытном лесничестве//Труды по лесному опытному делу Украины. 1928. - Вып. 8. С. 155-177.
  • 9. Юркевич И. Д., Голод Д. С., Красовский Е. Л. Рекреационные ресурсы басейна Нарочи и их использование. Минск: Наука и техника, 1989. - 224 с.