Отопление зданий и помещений может быть постоянным или прерывистым (периодическим) [2-4; 6]. При прерывистом отоплении снижается или полностью отключается подача теплоты в здание или помещение. В холодный период года в жилых помещениях, когда они не используются, допускается обеспечивать температуру внутреннего воздуха ниже нормируемой, но не менее 15 °С [5]. Использование прерывистого режима отопления позволяет уменьшить расход тепловой энергии.
Суточный цикл имеет три части [4]:
- начало работы системы отопления (период «натопа» помещения) - температура в помещении повышается от минимальной допустимой tд до расчетной температуры внутреннего воздуха tв;
- время установившегося режима - в помещении поддерживается температура внутреннего воздуха tв;
- прекращение подвода теплоты - температура в помещении понижается до минимальной допустимой tд.
Тепловой поток в режиме разогрева помещения больше, чем во время установившегося режима. Дополнительная мощность системы отопления при периодической эксплуатации в течение всего отопительного периода в нормальном и экономичном температурных режимах зависит от следующих показателей:
- времени, необходимого для достижения расчетной температуры внутреннего воздуха;
- величины снижения температуры внутреннего воздуха по отношению к расчетной;
- теплоаккумулирующей способности здания;
- воздухообмена во время натопа.
Для повышения энергоэффективности систем отопления (снижения энергопотребления) возможно использование прерывистого режима подачи теплоносителя. Однако время натопа помещения в нормативных документах не регламентируется, т.е. предполагается только постоянное отопление. При прерывистом отоплении существенным фактором следует рассматривать скорость восстановления температурного поля помещений до расчетного значения.
Постановка задачи и исследование
Для изучения особенностей формирования микроклимата в помещениях с притоком наружного воздуха через вентиляционные клапаны и отопительными приборами разного типа (конвектор и радиатор) использован метод численного моделирования.
Моделирование микроклимата выполнялось на примере типовой жилой комнаты здания 137 серии:
- размеры помещения: 6х3 м; внутренняя высота 2,56 м; внутренний объем комнаты - 46,08 м3; суммарная площадь внутренних стен - 73 м2;
- одно окно размером 1,5х1,5 м.
Расчетная температура наружного воздуха - минус 26 °С. Расчетная температура внутреннего воздуха - плюс 20 оС.
Сопротивление теплопередаче наружной стены и оконного блока приняты в соответствии с нормативными требованиями:
для наружной стены - Rс = 3,1 (м2 К)/Вт;
для окна - Rок = 0,51 (м2 К)/Вт.
Коэффициент теплоотдачи для наружной поверхности - Вт/(м2 К).
Теплообмен с соседними помещениями не учитывается. Расчетный тепловой поток системы отопления помещения - 1026 Вт. Отопительные приборы размещаются под окном. Предусмотрена установка конвектора типа Atoll Pro (ПКН 310) производства ОАО «Фирма Изотерм» (Санкт-Петербург). При параметрах теплоносителя для отопительного прибора 95/70 °С (применительно к двухтрубной системе водяного отопления и схеме движения теплоносителя в отопительном приборе - сверху-вниз) тепловой поток конвектора составляет 980 Вт. Расхождение между требуемым тепловым потоком конвектора и тепловым потоком конвектора, принятого к установке, допускается в сторону уменьшения в пределах до 5%, но не более чем на 60 Вт (при нормальных условиях) [5]. В данном случае это расхождение составляет 4,1% (56 Вт).
Конвектор моделировался в виде прямоугольного блока. На верхней грани блока имитировалась выходная решетка конвектора длиной 0,74 м и глубиной 0,1 м, через которую выходит струя нагретого воздуха со скоростью 0,34 м/с и температурой 50 °С (эти параметры получены из натурных измерений). Конвективная составляющая теплового потока равна 94%. Через нижнюю грань блока в конвектор поступал воздух из помещения. Остальная часть теплового потока моделировалась как радиационная составляющая (6% от общего теплового потока), излучаемая нагретым кожухом прибора.
Радиатор моделировался в виде прямоугольного блока длиной 1,3 м, высотой 0,4 м, глубиной 0,14 м, заполненного условным материалом со специально подобранными характеристиками, чтобы имитировать теплоемкость массивной металлической конструкции радиатора. Полный тепловой поток от радиатора - 980 Вт; 50% - конвективная составляющая и 50% - радиационная составляющая.
Поступление приточного воздуха в помещение осуществляется через приточные клапаны типа «Аэреко». Размеры приточных клапанов были выбраны таким образом, чтобы в помещении обеспечивался однократный воздухообмен. Приняты два приточных клапана сечением 0,01х0,3 м2 каждый, расположенных в верхней части оконного блока. При перепаде давления между внутренним и наружным воздухом 10 Па клапаны обеспечивают расход приточного воздуха 46 м3/ч, т.е. однократный воздухообмен в комнате. Удаление воздуха из комнаты выполняется через щель, имитирующую зазор под закрытой дверью, расположенной в стене напротив окна. Расположение приточных клапанов показано на рис. 1.
Рис. 1. Расчетная схема (разрез) помещения и расположения точек контроля температуры.
Расчет проводился с использованием пакета STAR-CD. Системы уравнений аэродинамики и теплопереноса решались в нестационарной постановке с шагом по времени, который варьировался от 1 до 10 с. В ходе расчета контролировались температуры воздуха в четырех точках (рис. 1).
В результате расчетов для двух типов отопительных приборов получены графики изменения температуры воздуха во времени при нагреве помещения до и после открытия приточных клапанов для 4 контрольных точек (рис. 2 - 5).
Рис. 2. Характер изменения температуры в точке 1.
Рис. 3. Характер изменения температуры в точке 2.
Рис. 4. Характер изменения температуры в точке 3.
Рис. 5. Характер изменения температуры в точке 4.
Начальная температура воздуха в помещении перед включением отопительных приборов принята равной плюс 15 оС. Приточные клапаны при предварительном нагреве помещения закрыты.
После включения отопительных приборов:
- конвектора: температура воздуха в верхних контрольных точках (1 и 3) достигла 28 оС за 10 минут; в нижних точках (2 и 4) температура воздуха достигла 23 оС за 12-14 минут;
- радиатора: температура воздуха в верхних точках достигает 28 оС за 30 минут; в нижних контрольных точках (2 и 4) при работе радиатора температура воздуха за 30 минут достигает значений 26 оС.
Таким образом, в режиме нагрева помещения («натопа») при работе конвектора температура в верхних контрольных точках устанавливается в 3 раза быстрее, чем при работе радиатора. Сравнивая процесс нарастания температуры в нижних точках, где в меньшей степени сказывается влияние конвективной струи конвектора, видно, что прогрев воздуха при работе конвектора также происходит быстрее. Например, в точке 2 температура 23 °С при работе конвектора достигается за 12 мин, а при работе радиатора - за 20 мин.
При достижении температуры воздуха в верхних контрольных точках 28 ºС проводилось открытие приточных клапанов.
Через 10 мин после открытия клапанов температура воздуха в контрольных точках снижается до плюс 22-24 ºС для обоих приборов. Далее с течением времени температура во всех контрольных точках продолжает снижаться. Однако характер падения температуры (во всех контрольных точках) при работе радиатора более резкий, чем для конвектора. Это объясняется большей подвижностью воздуха в помещении при работе конвектора, которая связана с взаимодействием более мощной конвективной струи нагретого воздуха с холодным приточным воздухом.
Через 50 минут после открытия клапана минимальная температура в контрольных точках при работе конвектора - 22-23 ºС, а при работе радиатора - 19,5-21 ºС, т.е. на 2 ºС ниже.
Заключение
- Поля температуры воздуха в жилых помещениях при подаче наружного воздуха через вентиляционные клапаны неоднородны. Формирование поля температуры в помещении в значительной степени зависит от типа отопительного прибора.
- Сравнение изменения температуры в объеме помещения при работе конвектора и радиатора позволяет сделать вывод о том, что при работе конвектора поле температуры в комнате более однородно вследствие преобладания конвективной составляющей теплообмена.
- В нормативных документах для жилых помещений для повышения энергоэффективности систем отопления путем применения прерывистого режима подачи теплоносителя необходимо установить длительность периода восстановления температуры внутреннего воздуха до расчетного значения.
- Результаты исследования формирования температурного поля отапливаемых жилых помещений с учетом естественной вентиляции должны учитываться как проектировщиками, так и производителями отопительных приборов.
Рецензенты:
Анисимов С.М., д.т.н., профессор кафедры «Теплогазоснабжение и вентиляция», ФГБОУ ВПОУ «СПбГАСУ», г. Санкт-Петербург.
Гримитлин А.М., д.т.н., профессор кафедры «Теплогазоснабжение и вентиляция», ФГБОУ ВПОУ «СПбГАСУ», г. Санкт-Петербург.