Scientific journal
Modern problems of science and education
ISSN 2070-7428
"Перечень" ВАК
ИФ РИНЦ = 1,006

A CHEMICAL CLEANING OF IRON ORES FROM IMPURITIES

Stas N. F. 1
1 National Research Tomsk Polytechnic University
A chemical cleaning of iron ores make it possible to get natural compounds of ferrum with a minimum content of impurities, which can be used in a chemical processes (synthesis of irons, preparation of sodium hydroxide from ni-trate and sodium carbonate), in the manufacture of batteries and in production of powdered iron. The article contains a description and analysis of patents, articles and reports, which includes the results of studies on the chemical beneficiation of iron ores. Showed, that studies carry out by four directions: 1) alkaline treatment at atmospheric pressure, 2) maceration of impurities in digesters, 3) agglomerating with the sodium carbonate, 4) acid treatment. The classifying of masterbatchs at common, pure, and ultrapure was offered. The timeliness of studies on the chemical beneficiation of iron ores due to the limited capacity of physical methods and to the increasing demands for using ultrapure masterbatchs was concluded. The program of studies on cleaning of iron ores from impurities using a chemical reagents and on it processing of physical and electrophysical methods was developed.
iron ore
impurities
cleaning
chemical beneficiation.
Введение

Производством железа, сталей и сплавов на его основе занимается металлургия. Основными стадиями металлургического процесса является добыча железной руды, её обогащение и химическое восстановление железа из природных соединений, находящихся в руде. Обогащение железной руды производится методом магнитной сепарации, который обеспечивает отделение в магнитном поле парамагнитных соединений железа от диамагнитных соединений примесей. Эффективность магнитного обогащения зависит от качества добываемой руды: содержания железа, состава и магнитных свойств его соединений и взаимосвязи этих соединений с примесями.

Продукт обогащения железной руды, предназначенный для получения железа доменным способом, называется рядовым концентратом. Рядовые концентраты содержат от 60 до 70 % железа и до 10 % примесей, в которых преобладает кремний в виде кварца и других кремнийсодержащих минералов, а также алюминий, кальций, магний и другие примеси. Более полная очистка рядового концентрата от примесей не требуется, так как в самом доменном процессе происходят процессы очистки: примеси переходят в шлак при взаимодействии с карбонатом кальция, который в виде известняка вводится в домну вместе с концентратом.

Положение кардинально меняется при самостоятельном использовании железорудного концентрата в химических процессах, при синтезе ферритов, в производстве щелочных аккумуляторов, при получении порошкового железа. Для этих целей производятся чистые концентраты, в которых содержание примесей снижено до 2-3 %, в том числе кремния до 0,35-1,3 %. Чистые концентраты получают из рядовых, применяя дополнительное измельчение, обработку в сильных магнитных полях, флотацию.

Но уже сейчас необходимы и в ближайшей перспективе потребуются в большом количестве сверхчистые концентраты, в которых содержание примесей должно быть на уровне сотых долей процента. Их получение традиционными методами магнитной сепарации и флотации практически невозможно, так как потребуется сверхтонкое, технически не достижимое измельчение руды. Но их получение возможно методами химического обогащения, исследования которых проводятся по четырём направлениям: 1) выщелачивание примесей при низких температурах, 2) выщелачивание в автоклавах, 3) спекание с содой, 4) обработка кислотами.

Обработка растворами щелочей при атмосферном давлении

Химическое обогащение железных руд с помощью раствора щёлочи впервые было исследовано во Франции [12]. В связи с истощением в этой стране железорудных запасов, авторы изучали возможность использования в металлургии бедных руд Лотарингии. Эти руды содержат много кремния в виде кварца и силикатов железа и алюминия, а также кальций и много фосфора, а минеральный состав затрудняет применение магнитного и флотационного обогащения. Авторы патента установили, что обработка руды раствором гидроксида натрия при температуре, близкой к температуре кипения раствора, приводит к значительному удалению примесей: выщелачивается до 80 % кремния, до 90 % алюминия, почти полностью удаляются сера и фосфор. Выщелачивание кремния и алюминия идет за счет образования растворимых силикатов и алюминатов натрия, примеси фосфора образуют растворимые фосфаты, а серы - сульфат натрия.

Исследования французских авторов были доложены на Международном конгрессе по прикладной минералогии [23], и в этом докладе имеются спорные утверждения. Например, они считают, что тонкое измельчение руды не является обязательным, так как выщелачивание руды грубого помола идет достаточно хорошо. Это утверждение противоречит закономерностям кинетики гетерогенных реакций, скорость которых тем больше, чем больше поверхность раздела, которая увеличивается при измельчении твердых веществ. Авторы также утверждают, что при обработке железных руд щелочами соединения двухвалентного железа способы к некоторому растворению, и рекомендуют выщелачивать руды с минимальным содержанием FeO. Но это утверждение не согласуется с тем, что оксид железа (II) не обладает амфотерными свойствами, поэтому его взаимодействие с растворами щелочей маловероятно.

В Болгарии изучали химическое обогащение бедной железной руды месторождения «Нешковцы» также путем обработки растворами гидроксида натрия; при этом наблюдали 50 %-е удаление SiO2 и Al2O3 и 96 %-й выход концентрата с содержанием железа 50 % [9].

Очистка от примесей рядового Криворожского концентрата, Керченской руды и пиритных огарков раствором гидроксида натрия изучалась в России [1, 2]. Установлено, что степень выщелачивания примесей зависит от исходного материала: например, содержание кремния в Криворожском концентрате снижается с 8,62 до 0,76 %, в Керченской руде с 13,7 до 0,40 %, а в пиритных огарках с 6,76 до 4,70 %. Фосфор, сера и мышьяк выщелачиваются до сотых долей процента, а содержание кальция и магния после щелочной обработки возрастает.

О поведении серы, содержащейся в железных рудах, при обработке растворами гидроксида натрия докладывалось на Международном конгрессе по прикладной минералогии [22]. Наиболее вероятной, по мнению авторов, является реакция

2FeS2 + 8NaOH + 7O2 = 2Fe(OH)2 + 4Na2SO4 + 2H2O

в результате которой на поверхности руды образуется нерастворимая пленка соединений железа, замедляющая или останавливающая процесс выщелачивания. Но с предлагаемым уравнением реакции нельзя согласиться, потому что гидроксид железа (II) в нейтральной и щелочной средах легко окисляется кислородом. Более вероятна, по нашему мнению, реакция:

4FeS2 + 16NaOH + 15O2 = 4Fe(OH)3 + 8Na2SO4 + 2H2O

Сложный метод обогащения железных руд с помощью гидроксида натрия и магнитной сепарации опробован в США. Он предусматривает смешивание руды или рядового концентрата с небольшим объемом разбавленного раствора гидроксида натрия, а затем обработку смеси при 260-400 ºС перегретым паром. При таком воздействии связи между кристаллами SiO2 ослабляются, между ними и минералами железа возникают разрушающие напряжения. Поэтому при последующей магнитной сепарации достигнуто более полное удаление кремния [18]. С этой работой согласуются данные о том, что химическая обработка (щелочная и кислотная) железорудных концентратов, содержащих кварц и силикаты железа, изменяет поверхностные свойства минералов, что улучшает показатели флотации и повторной магнитной сепарации [4].

Обработка растворами щелочей в автоклаве

Скорость всех физико-химических процессов, в том числе гетерогенных процессов выщелачивания, увеличивается с повышением температуры, поэтому с самого начала исследований по химическому обогащению железных руд появились работы, в которых выщелачивание примесей проводится в автоклавах, что позволяет поддерживать температуру процесса выше температуры кипения раствора.

В США изучали автоклавное выщелачивание бедной железной руды, состоящей из гематита Fe2O3, гетита FeO и кварца SiO2 с содержанием 30-39 % железа и 39-53 % SiO2. При содержании гидроксида натрия в растворах 130 г/л и температуре выщелачивания 209 ºС был получен концентрат, содержащий 65 % железа [24].

В период существования Советского Союза исследования по автоклавному процессу проводились в отраслевом институте Министерства черной металлургии «Механобрчермет», где из рядовых концентратов Лебединского и Оленегорского горно-обогатительных комбинатов были получены чистые концентраты с содержанием железа 71,9 % и 0,11-0,15 % SiO2 [3]. Но методика исследований и условия получения такого концентрата в публикации не указываются.

В институте «Уралмеханобр» методом автоклавного выщелачивания обрабатывали руду с тонким вкраплением соединений кремния в магнетит («магнетитовые кварциты»). Результаты исследований описаны в ведомственном отчёте, доступном небольшому числу специалистов. По результатам этих исследований сделан вывод о возможности селективного удаления кремния из магнетитовых кварцитов, но, как записано в отчёте, «...условия проведения процесса для руд разных месторождений должны быть уточнены».

Спекание с кальцинированной содой

Обработка кальцинированной содой (карбонатом натрия) изучается как один из возможных способов очистки железных руд от примесей. Известен японский патент, по которому железную руду, для удаления из неё алюминия, хрома и других примесей, спекают с содой, а затем обрабатывают спеки водой [13]. Дополнительная обработка полученного концентрата аммиаком способствует очистке от кобальта и никеля, удаляемых в составе растворимых комплексных соединений [17].

Спекание с содой изучалось в Центральном научно-исследовательском институте черной металлургии (ЦНИИЧМ, Россия). В лабораторных опытах обычный (рядовой) концентрат, полученный методом магнитной сепарации, спекали с содой при 850 ºС, затем спек измельчали и промывали сначала водой, а затем 1 %-й соляной кислотой и опять водой. Первое сообщение о полученных результатах было оптимистичным: содержание кремния (SiO2) в концентрате снижается до 0,05-0,10 % [6]. Но в дальнейшем, при проведении заводских испытаний, в этот процесс была введена дополнительная обработка фтороводородной кислотой (для более полного удаления кремния в виде газообразного SiF4), следовательно, в заводских испытаниях данные о глубокой очистке от кремния при спекании концентрата с карбонатом натрия не подтвердились.

Очистка кислотами

Кислотная обработка железных (а также марганцевых и других руд) проводится с целью удаления примесей фосфора, мышьяка, серы, кальция и магния. Согласно французскому патенту [10], любая минеральная кислота с концентрацией 2 н при температуре 70 ºС выщелачивает мышьяк из железных и марганцевых руд, а по другому патенту [21], соляная кислота выщелачивает мышьяк при обычной температуре. Применение серной и соляной кислот для очистки железных руд от фосфора и мышьяка предлагается в патентах [5, 11, 14, 19, 20].

Много исследований проведено по очистке железных руд азотной кислотой. Приоритет этого направления принадлежит Японии. Еще в 1963 г. в этой стране был запатентован метод удаления примесей из железной руды концентрированной азотной кислотой, который обеспечивает повышение содержания железа от 55 до 65 % за счет полного выщелачивания фосфора и мышьяка и частично - кальция, магния, марганца и серы [8]. В дальнейших исследованиях концентрация азотной кислоты была снижена без уменьшения эффективности выщелачивания за счет повышения температуры [15], добавления к азотной кислоте серной кислоты [16] и проведения процесса выщелачивания при 200 ºС в автоклаве [7].

Но кислоты, как известно, взаимодействуют с соединениями железа, что должно приводить к дополнительному расходу кислот и снижению выхода концентрата, но во всех патентах, кроме российского [5], эта негативная сторона кислотного обогащения игнорируется. Следует также отметить, что регенерация кислот, использованных для удаления примесей из железной руды или её концентрата, невозможна, тогда как щёлочь после выщелачивания примесей кремния и алюминия можно регенерировать добавлением извести.

Выводы и программа исследований

Изучение литературы свидетельствует о том, что применение химических методов с целью очистки железных руд от примесей изучается в разных странах и приводит к положительным результатам. Исследования по химическому обогащению железных руд становятся всё более актуальными по двум причинам: 1) истощаются запасы железных руд, легко обогащаемых традиционным методом магнитной сепарации, и в переработку поступают руды со сложным минералогическим составом, в которых примеси образуют с железом тонкую и прочную структуру вкраплений, сростков и химических соединений; 2) увеличиваются масштабы применения сверхчистых концентратов и возрастают требования к их составу. Поэтому необходимы системные исследования процессов получения сверхчистых железорудных концентратов методами химического обогащения.

При изучении процессов химического обогащения имеет значение правильный выбор объектов исследования. Каждая руда оригинальна по своему химическому и минералогическому составу и по характеру взаимосвязей рудных минералов с минералами примесей. Но каждую руду исследовать на предмет химического обогащения не обязательно. Исследования целесообразно проводить в расчёте на масштабы производства исходного продукта и возможность получения новых научных и положительных практических результатов. С этой точки зрения наибольший интерес представляют магнетитовая руда Оленегорского месторождения, гематитовая руда Криворожского месторождения и железистые кварциты Курской магнитной аномалии.

Оленегорская руда (Россия) легче других обогащается методом магнитной сепарации, о чём свидетельствует производство чистого концентрата на Оленегорском ГОКе; возможно, что и химическое обогащение этой руды будет проходить более эффективно. Сверхчистый гематитовый концентрат Криворожской руды имеет перспективы применения в химии и химической технологии вместо оксида железа (III), получаемого химическим синтезом в небольшом количестве и потому весьма дорогостоящего. Курская магнитная аномалия - это самое крупное на нашей планете месторождение богатых железных руд, поэтому масштабы добычи и применения руды этого месторождения в ближайшие десятилетия будут только увеличиваться.

Во всех железных рудах и концентратах примесями являются соединения кремния, очистка от которого возможна растворами щелочей, и кальция и магния, для удаления которых применимы кислоты. Исходя из этого, нами была выполнена обширная программа всесторонних лабораторных исследований и проведены промышленные испытания; результаты исследований по этой программе являются содержанием следующих статей.

В лабораторных исследованиях изучены следующие закономерности: 1) растворимость железа при обработке Оленегорского и Криворожского концентратов кислотами; 2) очистка Оленегорского концентрата азотной кислотой от кальция и магния  в стационарных условиях; 3) очистка Криворожского концентрата от кальция и магния азотной кислотой в процессе его доизмельчения; 4) выщелачивание кремния из Криворожского чистого концентрата растворами гидроксида натрия при температурах ниже температур кипения растворов; 5) выщелачивание кремния из Криворожского чистого концентрата растворами гидроксида натрия в автоклаве при температурах выше температур кипения растворов; 6) автоклавное выщелачивание кремния из необогащённой руды Лебединского ГОКа (Курская магнитная аномалия); 7) выщелачивание примесей и раскрытие руды Лебединского ГОКа при обработке физическими и электрофизическими методами.

В результате этих исследований разработан автоклавно-щелочной способ получения сверхчистых железорудных концентратов. На Сибирском химическом комбинате этим способом была получена промышленная партия сверхчистого концентрата Криворожского гематита, которая была использована в химическом процессе переработки нитрата натрия. На Красноярском заводе «Сибэлектросталь» этим способом была произведена крупная партия сверхчистого Оленегорского концентрата, из которой было получено порошковое железо высокой чистоты.

Рецензенты:

Саркисов Юрий Сергеевич, доктор технических наук, профессор, заведующий кафедрой химии Томского государственного архитектурно-строительного университета, г. Томск.

Лотов Василий Агафонович, доктор технических наук, профессор кафедры силикатов и наноматериалов Томского политехнического университета, г. Томск.