Scientific journal
Modern problems of science and education
ISSN 2070-7428
"Перечень" ВАК
ИФ РИНЦ = 0,791

CHEMISTRY OF PROCESSES OF SELECTIVE DIVISION OF ПОЛИКАТИОННЫХ OF TECHNOGENIC WATERS

Mullina E.R. 1 Chuprova L.V. 1 Mishurina O.A. 1 Ershova O.V. 1
1 Nosov Magnitogorsk state technical university
В работе проведены исследования по разработке технологии осаждения ионов Mn2+ из сточных вод, которая предусматривает комплекс последовательно выполняемых операций, включающий процессы предварительного стадиального извлечения ионов меди и железа. Наиболее перспективным направлением в технологии водоочистки являются электрохимические методы. Данные методы позволяют максимально концентрировать и извлекать ценные компоненты из технических растворов. При этом они являются экологически чистыми, исключающими «вторичное» загрязнение воды анионными и катионными остатками, характерными для реагентных методов. Сущность предлагаемого метода заключается в электрообработке хлоридсодержащих растворов, при этом образуется молекулярный хлор, который взаимодействуя с водой, образует активные формы хлорсодержащих окислителей, так называемый «активный хлор». Далее, при контакте «активного хлора» с Mn (II) протекает окислительно-восстановительный процесс в ходе, которого ионы Mn2+ окисляются до нерастворимых форм Mn3+ и Mn4+. Предлагаемая комплексная технология поэтапного выделения ионов меди, железа и марганца достаточно проста, эффективна, не требует сложного аппаратурного оформления и может использоваться как самостоятельно, так и в системе существующих очистных сооружений. Данная технология может быть использована для организации замкнутого цикла водоснабжения на горно-металлургических предприятиях. Полученные по технологии продукты, являются кондиционным сырьем для металлургической промышленности. Внедрение данной технологии позволит существенно снизить экологическую нагрузку в регионе.
In-process conducted research on development of technology of besieging of ions of Mn2 from effluents, that envisages the complex of consistently executable operations, including the processes of preliminary stadial extraction of ions of copper and iron. Electrochemical methods are considered to be the most promising trend in the technology of water treatment. These methods provide maximum concentration and recovery of valuable components from industrial solutions. Besides they are environmentally safe and make it possible to avoid «secondary» water pollution with anion and cation leftovers which are typical for reagent methods. The main idea of the suggested method can be described in the following way: molecular chlorine is formed in the process of electrotreatment of chloride-containing solutions, this molecular chlorine reacts with water and forms active forms of chlorine-containing oxidizing agents, the so called “active chlorine”. Then when the “active chlorine” comes into contact with Mn (II) an oxidation-reduction process takes place and Mn2+ ions oxidize to insoluble Mn3+ and Mn4+. Developing the technology of deposition of Mn2+ ions from wastewater a set of sequentially executed operations, including pre-staged extraction of copper ions and iron. Тhe suggested complex technology of the gradual recovery of copper, iron and manganese ions is quite simple, efficient; it does not require sophisticated equipment and can be used both separately and as a part of the existing system of wastewater treatment facilities. Тhis technology can be used for establishing a closed cycle water supply at mining-and-processing integrated works of a copper pyrite mining enterprise. Тhe products produced by this technology can be used as high quality raw material for metallurgy. The introduction of this technology will significantly reduce the environmental burden in the region.
rational parameters
acid and main sedimentation
cementation
electroflotation
electrocoagulation
technology
processing
cleaning
iron
copper
manganese

Одними из основных исторически сложившихся отраслей экономики Урала являются предприятия горного и металлургического комплекса. Работа данных предприятий предполагает образование значительных объемов отработанных технологических растворов, характеризующихся высоким содержанием ионов меди, железа и марганца [1, 2]. Следовательно, разработка комплексной экологически безопасной технологии, позволяющей стадиально и селективно извлекать ценные металлы в виде товарной продукции с одновременным снижением их концентраций в водах до норм ПДК, на сегодняшний день является одной из актуальных научно-практических задач. Решение данной задачи, помимо улучшения экологической ситуации в регионе, позволит повысить и экономическую целесообразность всего горно-металлургического производства.

Наиболее эффективным и экологически безопасным методом извлечения металлов из водных растворов является электрофлотационный, который в сочетании процессов «осаждение-флотация» позволяет достигать высоких показателей извлечения ионов металлов из растворов в виде кондиционного сырья. Эффективность электрофлотационного способа обусловлена возможностью проведения флотации при низкой скорости газового потока, малым размером образующихся газовых пузырьков, а также наличием на их поверхности электростатического заряда, что является определяющим фактором при обосновании параметров технологии безреагентного извлечения гидрофильных осадков металлов [3, 4, 6].

Цель данной работы – разработка эффективной, экологически безопасной технологии переработки отработанных технологических растворов горно-металлургических предприятий, позволяющей в комплексе извлекать марганец, медь и железо в виде кондиционного сырья.

Материалы и методы исследования - сточные воды горных предприятий медно-колчеданного комплекса Южного Урала, характеризующиеся высоким содержание ионов марганца (до 300 мг/дм3), железа (до 520 мг/дм3) и меди (до 280 мг/дм3).

Экспериментальные исследования по извлечению ионов марганца проводили на модельных растворах Mn (II) с исходным содержанием хлорид-ионов 600 мг/дм3. В работе использовали бездиафрагменный двухкамерный электрофлотатор, представляющий собой емкость прямоугольной формы, внутренний объем, которого разделен на две камеры. Соотношение рабочих объемов камер друг к другу 1:5. Материал катода и анода в двух камерах одинаков: катоды - сталь ГОСТ 4986-90 толщиной 1 мм; аноды листовой титан марки ВТ-1-0 толщиной 2 мм с покрытием оксида рутения толщиной 5 мкм. Электропитание каждой камеры флотатора осуществляется автономно. В качестве источника постоянного тока для обоих камер флотатора был выбран выпрямитель типа ТЕ 50/48 с регулируемой силой тока от 0 до 50 А и напряжением от 0 до 48 В.

В первой камере электрофлотатора один электродный блок, расположен в нижней части камеры и представляет собой 7 монополярно подключенных вертикальных электродов. Соотношение анодов к катодам 1:2. Межэлектродное пространство 6 мм. Соотношение высоты электроблока к высоте рабочей зоны электрофлотатора 1:2. В первой камере протекает процесс электрохимического окисления Mn2+ «активным хлором», с образованием дисперсной фазы Mn+3, +4.

Во второй камере электрофлотатора четыре электродных блока, расположены в нижней части камеры. Каждый электроблок состоит из пластины анода, на которой в виде спирали, располагается катод. Соотношение высоты электроблока к высоте рабочей зоны электрофлотатора 1:4. Во второй камере флотатора осуществляли процесс электрофлотационного извлечения дисперсной фазы Mn3+,4+ из раствора.

Выбор конструкции и материала электродов обоснован стремлением максимально развить рабочую поверхность катода с целью эффективного и экономически целесообразного проведения процесса электрофлотации. При этом учитывалась доступности и невысокой стоимости исходного материала. Конструкционные особенности, используемых электроблоков в электрофлотационном процессе, а именно: увеличение площади катода и создание большого количества выступов, позволяют увеличить общее газонаполнение системы пузырьками меньшего диаметра (H2), что значительно улучшит эффективность извлечения дисперсной фазы марганца из растворов [1, 5, 6].

В общем виде процесс, протекающий при работе электрофлотатора можно условно разделить на три стадии:

1 стадия - перемешивание используемой воды с образующимся на аноде окислителем «активным хлором» с одновременным протеканием процесса окисления ионов Mn+2 до нерастворимых форм Mn+3,+4 по схеме:

2Cl- - 2e → Cl2↑­,

Cl2 + H2O → H+ + Cl- + HClO ,

Мn2+ + НСlО + Н+ → Сl- + Мn3+ + Н2О.

Анализ опыта использования «активного хлора» в качестве окислителя при окислении переходных металлов показал, что окислительно-восстановительный процесс протекает под действием атомарного кислорода, образующегося при восстановлении «активного хлора» ионами Mn2+. Причем ионы Mn2+ в окислительной системе выступают не только как восстановители, но и как катализаторы процесса, что значительно сокращает время протекания реакции:

2 стадия – коагуляция и образование агломератов марганца;

3 стадия – флотация комплексов «агломераты частиц - пузырьки газов».

В работе были исследованы основные закономерности протекания процесса окислительного осаждения ионов Mn2+ «активным хлором» при разных способах контакта окислителя с растворами, содержащими ионы Mn2+:

  • в первом случае рассматривался вариант реагентного осаждения Mn (II) электролизными растворами «активного хлора». Для этого водный раствор окислителя предварительно получали в электролизере путем электрообработки растворов NaCl. Далее полученный раствор «активного хлора» вводили в водную систему, содержащую ионы Mn2+;
  • во втором случае рассматривался вариант электрокоагуляционного осаждения Mn (II) в присутствии «активного хлора». Для этого в раствор, содержащий ионы Mn2+, предварительно вводили хлорид-ионы в виде раствора NaCl и затем проводили электролиз всей системы (при аналогичных первому случаю параметрах работы электролизера).

Результаты исследования

Результаты оценки влияния значений рН на процесс окислительного осаждения ионов Mn2+ (рис. 1) показали, что максимальное извлечение марганца в виде дисперсной фазы наблюдаются в случае реагентного осаждения – в интервале рН 5,0 − 10,5, и в случае электрохимического осаждения при рН 4,5 – 8,5.

Рис.1 Влияние рН раствора на извлечение Mn (II) в виде дисперсной фазы

При установлении оптимального диапазона рН в процессе окислительного осаждения ионов Mn2+ «активным хлором» необходимо учитывать, что в ходе электрообработки хлоридсодержа-щих растворов, на аноде, в зависимости от рН растворов возможно образование нескольких форм хлорсодержащих окислителей: Сl2, НСlО, СlО–, характери-зующихся разной окислительной активностью. Сравнительный анализ значений стандартных окислительно-восстановительных потенциалов показал, что максимальной окислительной активностью обладает НСlО, образование которой возможно в диапазоне рН от 3,5 до 7,5.

Следовательно, учитывая интервал рН, при котором наблюдается образование дисперсной фазы марганца, а также исходя из окислительной активности образующихся хлорсодержащих окислителей, процесс окислительного осаждения ионов Mn2+ рекомендуется осуществлять при реагентном осаждении − в диапазоне рН 5,0 – 7,5 и при электрокоагуляционном – от 4,5 до 7,5.

Кинетические зависимости процесса окислительного осаждения ионов Mn2+ (рис. 2) показали, что максимальное извлечение марганца в виде дисперсной фазы при реагентном осаждении наблюдаются через 5 минут после начала процесса, тогда как при электрокоагуляционном − через 1 минуту. То есть при электрокоагуляционном извлечении марганца скорость протекания процесса возрастет в 5 раз.

Рис. 2 – Извлечение Mn (II) из раствора в виде дисперсной фазы в зависимости от времени обработки и способа осаждении ионов Mn2+ «активным хлором»:

1 − реагентное осаждение ионов Mn2+;

2 − электрокоагуляционное осаждение ионов Mn2+

Данный факт объясняется тем, что в случае электрокоагуляционного извлечения окислительный процесс протекает при участии суммы окислителей, таких как НСlО, О∙, СlО∙, Сl∙, ОН∙, Н∙, которые из-за своей термодинамической неустойчивости мгновенно вступают в реакцию с ионами Mn2+, что приводит к значительному сокращению времени протекания процесса. Кроме того, в данном случае процесс окисления протекает во всем объеме обрабатываемого раствора, причем, выделяющиеся на электродах пузырьки газа способствуют равномерному распределению окислителя по всему объему реакционной смеси, что значительно интенсифицирует процесс окисления. При этом электрообработка образующейся коллоидной системы интенсифицирует процесс коагуляции. Так, в ходе выполнения экспериментов было отмечено, что начало образования четкой верхней границы слоя осадка в случае реагентного осаждения Mn (II) наблюдается после 18 минут с момента начала хлопьеобразования, тогда как при электрокоагуляционном осаждении это отмечалось уже после 1,5 минут.

Полученные кинетические зависимости показали что, максимальное извлечение ионов Mn2+ в виде дисперсной фазы наблюдаются после одноминутной обработки технических растворов. Экспериментальные исследования по установлению рациональных параметров работы электролизера позволили установить, что процесс электроокисления ионов Mn (II) до нерастворимых форм наиболее эффективно протекает в диапазоне рН 4,5 – 7,5 при электрообработке в течении 1 минуты более рационально проводить при концентрации ионов Cl− в растворе не менее 600 мг/дм3 и плотности тока на анодах 300 А/м2.

Полученные кинетические зависимости показали, что процесс электрофлотации на фоне анионов Сl− и SO42- протекает довольно интенсивно, кинетические кривые выходят на горизонтальные участки после 6 минут флотации растворов; максимальные показатели извлечения дисперсной фазы (в зависимости от концентрации анионов Сl− и SO42-) варьируется в пределах 98,6 − 99,2 %. Присутствие ионов CO32– оказывает негативное воздействие на процесс флотации дисперсной фазы марганца − с увеличением исходной концентрации ионов CO32- от 0,5 до 2,0 г/дм3, эффективное время флотации возрастает до 14 минут, а извлечение марганца снижается с 90 % до 68 % (рис. 3).

Рис. 3 – Зависимости извлечения дисперсной фазы Mn от времени электрофлотации из растворов, содержащих ионы CO32−:¯ 1 - 0,5 г/дм3; 2 - 0 г/дм3; 3 - 2,0 г/дм3

Рис. 4 – Зависимости извлечения дисперсной фазы Mn от времени электрофлотации, из растворов, содержащих ионы: SO42-, Cl- и CO32- (1:1): 1 - 0,5 г/дм3; 2 - 1,0 г/дм3; 3 - 2,0 г/дм3

Негативное влияние карбонат-ионов на процесс флотации объясняется тем, что ионы СО32– в водных растворах гидролизуются с образованием гидроксогрупп ОН–, приводящих к подщелачиванию раствора. При этом происходит частичная нейтрализация положительного значения ζ-потенциала поверхности дисперсной фазы, что, учитывая электростатический механизм формирования флотокомплекса «дисперсная фаза – пузырек», негативно сказывается как на кинетике флотационного процесса, так и на показателях извлечения марганца.

При совместном присутствии хлорид-, сульфат- и карбонат- ионов наблюдается частичная нейтрализация негативного воздействия ионов CO32– на процесс флотации − эффективное время флотации снижается до 10 минут, а извлечение марганца из растворов возрастает в диапазоне 96,4 – 98,9 % (рис. 4). Нейтрализация негативного воздействия карбонат-ионов на процесс флотации связана с укрупнением флотируемых частиц марганца вследствие сжатия диффузионного слоя противоионов при введении в дисперсную систему ионов SO42¯ и Сl¯. Таким образом, проведенные исследования позволяют утверждать, что процесс электрофлотационного извлечения дисперсной фазы марганца из растворов эффективно протекает при рН 5,5 − 7,5; времени флотации − 10 минут; плотности тока на катодах 80 − 100 А/м2.

Результаты исследования процесса электрохимического извлечения Mn (II) из многокомпонентных водных систем, содержащих ионы: Мn2+, Fе2+, Fе3+ и Cu2+ показали, что процесс не является селективным по отношению к катионам железа и меди. Поэтому, при разработке технологии селективного извлечения ионов Mn2+ необходимо предусмотреть комплекс последовательно выполняемых операций, включающий процессы предварительного стадиального извлечения ионов меди и железа.

Для извлечения ионов меди целесообразно использовать гальванические процессы, которые в виду существенной разницы в значениях стандартных электродных потенциалов данных металлов (φ0Мn = −1,18В, φ0Сu = + 0,34В) позволят селективно извлечь медь не изменяя при этом концентрацию ионов Mn2+ в водных системах. Для извлечения железа эффективно применение метода кислотно-основного осаждения, т.к. при рН = 4,0 железо практически полностью осаждается в виде гидроксида Fе(ОН)3.

Заключение

Полученные практические результаты реализации разработанной технологии селективной переработки отработанных технологических растворов горно-металлургических предприятий позволили сделать следующие выводы:

  • предлагаемая технология достаточно проста, эффективна, не требует сложного дорогостоящего оборудования и может использоваться как самостоятельно, так и в системе существующих очистных сооружений;
  • данная технология может быть использована для организации замкнутого цикла водоснабжения на ГОКах медноколчеданного комплекса;
  • внедрение предлагаемой технологии позволит получать из кислых техногенных вод медь, железо и марганец в виде товарных продуктов и одновременно снизить концентрации данных металлов в стоке до норм ПДК.

Рецензенты:

Бигеев В.А., д.т.н., профессор, директор института металлургии, машиностроения и металлообработки ФГБОУ ВПО «Магнитогорский государственный технический университет им. Г.И. Носова», г. Магнитогорск;

Стеблянко В.Л., д.т.н., профессор ФГБОУ ВПО «Магнитогорский государственный технический университет им. Г.И. Носова», г. Магнитогорск.