Scientific journal
Modern problems of science and education
ISSN 2070-7428
"Перечень" ВАК
ИФ РИНЦ = 0,813

THE MATRIX APPROACH OF SYNTHESIS OF SYSTEMS OF SIGNALS WITH THE GIVEN PROPERTIES

Gaychuk D.V. 1 Gaychuk V.Yu. 2
1 Stavropol State Agrarian University
2 North-Caucasus Federal University
В статье рассматривается метод синтеза ансамблей дискретных ортогональных сигналов, в основе которого лежит унитарное преобразование исходной системы сигналов, представленной в виде комплексной матрицы. Так как при унитарных преобразованиях норма векторов, расстояния, углы, ортогональность и ортонормированность инвариантны, то, осуществляя преобразование, можно получать системы сигналов с новыми свойствами, но сохраняющими при этом свою ортогональность. Результаты исследований показали, что значения боковых пиков автокорреляционных и взаимокорреляционных функций сигналов однозначно определяются комбинациями соответствующих фазовых коэффициентов. А значения боковых пиков корреляционных функций преобразованной системы сигналов, кроме этого, зависят от линейных комбинаций фазовых параметров унитарного оператора. Таким образом, целенаправленно изменяя параметры унитарного оператора, можно получать системы дискретных ортогональных сигналов с требуемыми корреляционными свойствами. Задача синтеза сводится к отысканию совместной области допустимых решений линейных уравнений вида Ах=В.
In article the method of synthesis of ensembles of the discrete orthogonal signals which cornerstone unitary conversion of the initial system of signals presented in the form of a complex matrix is considered. As in case of unitary conversions the norm of vectors, distances, angles, orthogonality are invariant, realizing conversion it is possible to receive systems of signals with new properties, but saving thus the orthogonality. Results of researches showed that values of side peaks autocorrelated and mutually correlative functions of signals are defined by combinations of the appropriate phase coefficients. And values of side peaks of correlative functions of the transformed system of signals besides depend on the linear combinations of phase parameters of the unitary operator. Thus, purposefully changing parameters of the unitary operator, it is possible to receive systems of the discrete orthogonal signals with the required correlative properties. The task of synthesis is consolidated to searching of joint area of admissible solutions of the linear equations of a look Ах=В.
synthesis of systems of signals
side peaks of correlative functions
unitary operator

Эффективным способом борьбы с многолучевостью является разнесенный прием по времени прихода лучей с последующим их сложением по методу квадратичного суммирования [1, 6]. При этом в каналах с дискретной многолучевостью с задержками лучей 2–3 мс возможно использование сложных сигналов с небольшой базой. Однако данный способ не находит практического применения, так как характеристики известных ансамблей Уолша, Велти, Радемахера не отвечают требованиям «узости» огибающих авто- и взаимокорреляционных функций, а существующие методы синтеза ансамблей дискретных ортогональных в усиленном смысле сигналов реализуют лишь требование ортогональности в усиленном смысле и не учитывают требования к корреляционным характеристикам сигналов. Рассмотрим линейные унитарные преобразования с целью разработки нового метода синтеза ансамблей сигналов, удовлетворяющих заданным требованиям.

Целью исследований является анализ зависимости корреляционных характеристик сигналов ансамбля от параметров унитарного оператора. Полученные результаты позволят синтезировать системы дискретных ортогональных сигналов с требуемыми корреляционными свойствами.

Материал и метод исследования. В общем случае любой ансамбль сигналов можно представить в виде набора функций:

где хk(t)ÎL2(0;Т), для k=1,2,…,n.

В качестве сигналов целесообразно рассматривать лишь те функции, энергия которых на конечном интервале конечна, т.е.:

В случае линейного варианта разделения сигналов необходимо, чтобы функции, описывающие их, были линейно независимыми.

Функция, задающая дискретный сигнал, является кусочно-постоянной, т.е. если х(t) задает дискретный сигнал на отрезке времени [0;T], то:

где Аi – некоторое число в общем случае комплексное, {ti} – конечное покрытие отрезка [0;T], т.е.:

где n – число значений, которое принимает сигнал.

Комплексную огибающую любого дискретного сигнала можно представить в виде совокупности конечного числа прямоугольных импульсов с длительностью t, амплитудами аi и фазами ji[2]. Таким образом, комплексная огибающая х(t) однозначно определяется вектором в n-мерном комплексном пространстве:

где .

Пусть сигналы ансамбля задаются столбцами матрицы вида:

(1)

где n- размерность ансамбля, т.е. количество различных сигналов в ансамбле.

Ограничимся рассмотрением ансамблей сигналов с пик-фактором огибающей равной 1 т.е. arq=a=const.

При некогерентном приеме сигналов важны значения огибающей корреляционных функций [5]. Соотношение, описывающее огибающие, имеет вид [7]:

(3)

где m – номер бокового пика корреляционной функции, * – знак комплексного сопряжения.

В формулах (2) и (3) при r = q описываются боковые пики огибающей автокорреляционной, а при r ¹ q – взаимокорреляционной функции.

Распишем соотношение (3), например, для первого и второго бокового пика. Для этого подставим (1) в соотношение (3)при m=1и m=2:

(5)

(6)

Тогда (3) можно записать в виде:

(8)

где m изменяется от 0 до n-2.

Распишем соотношение (8):

 (9)

Очевидно, что подкосинусные выражения слагаемых, начиная с n-m-2-го, являются линейной комбинацией подкосинусных выражений первых n-m-1 слагаемых:

и т.д.

Теперь соотношение (8) можно записать:

(10)

где определяется соотношением:

(11)

Таким образом, величины однозначно определяют значения боковых пиков автокорреляционных при r = q и взаимокорреляционных при r ¹ q функций сигналов ансамбля.

Рассмотрим преобразование вида:

где А – унитарный оператор, т.е.:

* – знак эрмитова сопряжения, I – единичная матрица.

Унитарные операторы сохраняют скалярное произведение векторов, а также сложение векторов и произведение векторов на скаляр. Таким образом, при унитарных преобразованиях норма векторов, расстояния, углы, ортогональность и ортонормированность инвариантны [3,4].

Пусть матрица, задающая унитарный оператор А, имеет вид:

(12)

Очевидно, что унитарное преобразование вида (12) не изменяет пик-фактор огибающей сигналов. Матрица новых сигналов имеет вид:

(13)

Очевидно, что соотношения для боковых пиков огибающих корреляционных функций для новых сигналов будут включать параметры унитарного оператора в виде фазовых коэффициентов αi. Распишем соотношение для первого и второго бокового пикановых сигналов:

(15)

 (16)

Таким образом, соотношение (10) можно переписать:

(18)

где

(19)

Рассмотрим соотношение (19) для m-го бокового пика корреляционной функции. Таких соотношений будет n-m-1:

. (20)

Перепишем систему (20) в матричном виде:

(21)

Система (21) имеет n-m-1 уравнения и n неизвестных, следовательно, существует бесчисленное множество решений. В этом случае необходимо m-1 свободную переменную перенести в правую часть системы (21) и для простоты приравнять их к нулю, тогда система будет иметь единственное решение.

Результаты исследований. Таким образом, анализируя соотношения (18), (19), можно сделать вывод, что величины однозначно определяют значения боковых пиков автокорреляционных при r = q и взаимокорреляционных при r ¹ q функций сигналов ансамбля.

Обозначим через {Y(m)} множество допустимых значений, при которых уровень m-гобокового пика корреляционной функции лежит в заданных пределах. Очевидно, что для всех m-х боковых пиков корреляционных функций это множество будет одним и тем же. Множество {Y(m)} представляет собой прямоугольную матрицу с n-m-1 строками.

Тогда систему уравнений (21) можно записать:

(22)

где{a} – область допустимых решений для m-го бокового пика квадрата огибающей корреляционной функции r и q сигналов, представляющая собой прямоугольную матрицу, в столбцах которой содержатся наборы разрешенных значений переменных an, А(m) – матрица коэффициентов переменных an.

Выводы. Таким образом, задача синтеза сводится к отысканию совместной области допустимых решений для всех и для всех .

Рецензенты:

Калмыков И.А., д.т.н., профессор, профессор кафедры информационной безопасности автоматизированных систем Северо-Кавказского федерального университета, г. Ставрополь.

Шуваев А.В., д.э.н., профессор, профессор кафедры информационных систем Ставропольского государственного аграрного университета, г. Ставрополь.